

MINIMALIST
COMPUTER
DOCUMENTATION

A Study on Constructive and
Corrective Skills Development

A.W. Lazonder

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Lazonder, Adrianus Wijnandus

Minimalist computer documentation: A study on constructive and corrective skills
development / Adrianus Wijnandus Lazonder. − [S.l. : s.n.]. -Ill.
Thesis Enschede. − With ref. − With summary in Dutch.
ISBN 90-9007479-1
Subject headings: tutorial documentation / human-computer interaction.

Press: CopyPrint 2000, Enschede

© Copyright 1994, A.W. Lazonder, Enschede, The Netherlands.

MINIMALIST COMPUTER DOCUMENTATION

A study on constructive and corrective skills development

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de Rector Magnificus,
prof. dr. Th.J.A. Popma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 16 september 1994 te 15.00 uur

door

Adrianus Wijnandus Lazonder
geboren op 30 mei 1967

te Vlissingen

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. S. Dijkstra

Assistent promotor:
dr. H. van der Meij

v

Acknowledgements

Including acknowledgements in a minimal manual is inconceivable. Ex-
cluding them from this thesis would be just as inconceivable, for it would
wrong all those who have directly or indirectly contributed to its realization. I
therefore would like to express my gratitude to everyone who has assisted and
encouraged me during the past four years. In particular, I would like to
mention the following people.
 First of all, my supervisor Sanne Dijkstra, who has created a scientific
environment in which I could carry out this project according to my own
insights.
 I am greatly indebted to Hans van der Meij, my assistant-supervisor.
Without his intellectual stimulation, his constructive remarks (as well as the
corrective ones) and his unremitting enthusiasm this thesis would not have
come about.
 I gratefully acknowledge the help of Jules Pieters and Jeroen van Merriën-
boer. They were always willing to discuss my work and were kind enough to
read and comment upon the articles that underlie this thesis.
 I wish to thank John Carroll, for his inspiring ideas on designing computer
documentation and for his valuable comments on the first draft of this thesis.
 I would also like to express my gratitude to those who have assisted me in
designing and conducting the experiments. I particularly would like to thank
Pieter van der Poort and Maria Driessen, who critically reviewed the first
version of the manuals; Vincent Oude Griep for designing and adapting the
registration program that was used in the experiments; Christine Apperloo,
Tim Remmers, Yvonne de Thouars and Ingrid Zemmelink, who advised and
assisted me during the experimental sessions; and, again, Tim Remmers for
developing the ERR-system that was used in the third and fourth experiment.
 In preparing the final version of the text, I gratefully acknowledged the
linguistic corrections of Afineke de Vries. I would also like to thank Pauline
Teppich for her suggestions on the styling of the manuscript − and for
constantly reminding me to "work hard".
 Throughout the project, I truly appreciated the moral support of my room-
mate Jelke van der Pal. I have benefited a great deal from our discussions and
I will remember our loose talks with pleasure; they made my stay at the
department of Instructional Technology a pleasant one.

 ACKNOWLEDGEMENTS

vi

 I would also like to thank Charlotte Laret, who was always willing to listen
to my problems and usually pointed me to an obvious, yet overlooked
solution.
 Finally, special thanks to Petra. I know it is conventional to express
gratitude to one's partner for his or her patience and forbearance. I also know
that my gratefulness comes from the heart.

Ard Lazonder

July 1994

vii

Contents

Chapter 1: General introduction

1.1 Problem definition 13
1.2 Target population 14
1.3 Software package 15
1.4 Instructional material 17
1.5 Instructional design theory 19
1.6 Overview of the thesis 20
References 20

Chapter 2: The minimalist approach to tutorial documentation

Abstract 23
2.1 Introduction 23
2.2 Origin of the minimal manual 25
 2.2.1 Raison d'etre 25
 2.2.2 Historical predecessor 27
2.3 Characteristics of a minimal manual: minimalist principles 29
 2.3.1 Task orientation 29
 2.3.2 Text optimization 32
 2.3.3 Support of error-recovery 33
 2.3.4 Modularity 34
2.4 Conclusion 36
References 38

Chapter 3: The minimal manual: Is less really more?

Abstract 41
3.1 Introduction 41
3.2 The minimalist approach to tutorial documentation 44
3.3 Method 46
 3.3.1 Subjects 46
 3.3.2 Materials 47
 3.3.3 Procedure 48

 CONTENTS

viii

3.4 Results 50
 3.4.1 Time 50
 3.4.2 Errors and recoveries 51
 3.4.3 Quality of performance 52
 3.4.4 Motivation 55
3.5 Conclusions 55
3.6 Discussion 56
 3.6.1 In-depth expansions 57
 3.6.2 In-breadth expansions 57
References 58

Chapter 4: Toward effective error control in minimalist
 documentation

Abstract 61
4.1 Introduction 61
4.2 Errors and learning 62
4.3 A general model of error-recovery 63
 4.3.1 Detection 63
 4.3.2 Diagnosis 64
 4.3.3 Correction 64
4.4 Toward effective error control 65
4.5 Method 67
 4.5.1 Subjects 67
 4.5.2 Materials 67
 4.5.3 Procedure 68
4.6 Results 70
 4.6.1 Constructive skill 70
 4.6.2 Corrective skill 72
 4.6.3 Confidence 75
4.7 Discussion 76
References 79

Chapter 5: Verifying the preconditions for error-based
 learning

Abstract 83
5.1 Introduction 83
5.2 Method 85

CONTENTS

ix

 5.2.1 Subjects 85
 5.2.2 Materials 85
 5.2.3 Procedure 86
5.3 Results 87
 5.3.1 Number and type of errors 87
 5.3.2 Use of error-information 87
5.4 Discussion 88
References 90

Chapter 6: The effect of error-information in minimalist
 documentation

Abstract 91
6.1 Introduction 91
6.2 A general model of error-recovery 93
 6.2.1 Detection 93
 6.2.2 Diagnosis 95
 6.2.3 Correction 95
6.3 Principles for designing error-information 97
 6.3.1 Content 97
 6.3.2 Presentation 98
6.4 Investigating error-information 101
6.5 Method 102
 6.5.1 Subjects 102
 6.5.2 Materials 102
 6.5.3 Procedure 104
6.6 Results 105
 6.6.1 Learning activities 105
 6.6.2 Learning outcomes 108
6.7 Discussion 111
References 115

Chapter 7: General discussion

7.1 Introduction 119
7.2 Investigating minimalist tutorials 120
7.3 Error-based learning 122
7.4 Designing minimalist instruction 125
 7.4.1 Analysis 126

 CONTENTS

x

 7.4.2 Design 127
 7.4.3 Production 131
7.5 Epilogue 131
References 131

Dutch summary (Nederlandse samenvatting) 137

Appendices:

Appendix 1: Basic word processing tasks 147
Appendix 2: Illustrative pages of the minimal manual 149
Appendix 3: Illustrative pages of the self-study manual 151
Appendix 4: Motivational questionnaires experiment 1 155
Appendix 5: Confidence questionnaires experiment 2 159

xi

xii

 13

CHAPTER 1

General introduction

1.1 Problem definition

The apparent ease with which people use devices such as compact-disc
players, micro wave ovens, and fax machines tends to overshadow the
difficulties they had in learning how to use them. These difficulties would not
aris if every device were to embody its own use. But, in the era of technology,
contrivances have become so specialized that a match between function and
operation is no longer possible. As a consequence, people often encounter
problems when first using a piece of technical equipement.
 Some of these difficulties are caused by the apparatus. Most technical
devices are operated by pressing (a series of) buttons. The function of these
buttons is symbolized by icons; their effect often appears in the form of an
encrypted message on a display. To first-time users this type of symbolic
interaction turns out to be a major problem source: even with proper instruc-
tions they find it difficult to understand how the device's input and output
relate to their own goals and actions.
 Another major source of difficulties is the product's documentation that,
quite ironically, was meant to help. Assembly instructions, installation guides,
and user manuals often are, as Pirsig (1974) wrote "...full of errors, am-
biguities, omissions and information so completely screwed up you [have] to
read them six times to make any sense out of them..." (p. 24).
 In this respect, the microcomputer is no exception. Its appearance (i.e., the
interface) does not reflect its functions. Nor do the cryptically labeled
commands. Moreover, meaningless combinations of keys have to be pressed
and their effect often does not become clear from looking at the screen − if
one knows what to look for anyway. And, when looking for help, the manual
that came with the computer or the software often turns out to be confusing
rather than clarifying.
 People's struggle in getting to know a computer has often been the subject
of humorous anecdotes. Less often it has been the basis for scientific
inquiries. But, as more and more people start using computers, studying how
computer knowledge and skills are acquired becomes increasingly important.
The present research therefore deals with how people learn to use a computer
program. The general research problem for this thesis is defined as:

 CHAPTER 1

14

What instructional methods should be applied in teaching
people how to use a computer program?

This chapter starts with a description of the central components of this
problem definition (i.e., target audience, software package, and instructional
material). Then the general problem statement is further specified into a
research question and the instructional design theory used to address this
question is introduced.

1.2 Target population

In training computer related skills, learners often are classified according to
their level of prior computer experience. A common classification is that of
novices, beginners, intermediates, and experts (e.g., Brockmann, 1990; Chin,
1986). In this thesis the primary focus will be on the adult computer novice1.
The key features of this user group (i.e., level of computer experience, prior
knowledge and skills, learning preferences) are described below.
 Most commercially available software packages are designed for a broad
population of users, differing considerably on variables like age, educational
background, cognitive ability, and learning style. The novices among these
users share one characteristic: they have little or no computer experience.
Based on a review of the literature, both Allwood (1986) and Schriver (1986)
concluded that this qualification has been given different meanings, causing
the term 'novice user' to denote anything from users without any previous
computer experience to users approaching the expert status. Consequently, a
more explicit definition is called for. In this thesis, novices are defined as
users who have worked with a computer for less than 50 hours, and, who have
no experience with the software that is central in training.
 Novice users thus lack nearly all computer-related knowledge and skills.
They have little or no knowledge of how a computer works, and they are not
familiar with its jargon. The same goes for the software. New users know little
of its operation, and they lack most necessary skills to work with it (e.g.,
Allwood, 1986; Mack, Lewis & Carroll, 1987; Sein & Bostrom, 1989). Their
interactions with the program can therefore be characterized as a problem
solving situation (Allwood, 1986; Moran, 1981).
 Notwithstanding their scanty experience in working with a computer, adult
computer novices do not come to their learning task as blank slates. Computer

1 the terms novice, first-time user and new user are used interchangeably.

GENERAL INTRODUCTION

15

application programs are always meant to be used in some task domain (e.g.,
accounting, clerical work, statistics), and adult novices often have
considerable knowledge and skills in these domains. In that respect, they bring
a variety of experience to the training scene. For instance, graphical designers
who want to learn a desktop publishing package are familiar with the
graphical terminology and are skilled at paging up texts, designing posters or
drawing comprehensible graphs. But, what they do not know is how to use the
computer for this purpose.
 Their knowledge of the underlying task domain provides new users with
clearly outlined ideas and expectations about the training. They are not
learning for learning's sake. Rather, they are trying to use a tool, a tool they
believe will facilitate their work and activities. As a result, they are highly
motivated to achieve personal goals (Carroll, 1990; Knowles, 1984). Few (if
any) of these goals refer to learning about the program. Thus, novice users
show very little interest in getting to know and understand all the facts of a
program. Rather, they prefer to act, to do things with the program. They only
want to gain understanding of the components of the system and their
relations if it helps them achieve their goals. In short, they want to 'read to
learn to do' rather than to 'read to learn' (Redish, 1988).
 The learning preferences of novice users contrast with their information
needs. This dissimilarity has become known as the paradox of sensemaking:
first-time users show a strong desire to act in order to learn, but, at the same
time, their actions, errors, and misconceptions show that they need to learn in
order to be able to act (Carroll & Rosson, 1987). This paradox implies that
designing workable training materials for novice users requires a constant
balancing between their desire to act and their need for knowledge. More
specifically, novice users' training needs can be met by presenting them only
the prerequisite knowledge to cope with the activity and allowing them to
learn more from engaging in it.

1.3 Software package

To a large extent, research on novice computer users has concentrated on
word processing (e.g., Allwood & Eliasson, 1987; Bovair, Kieras & Polson,
1990; Carroll & Carrithers, 1984; Charney & Reder, 1986; Czaja, Hammond,
Blascovich & Swede, 1986; Douglas & Moran, 1983; Foss, Smith-Kerker &
Rosson, 1987; Frese et al., 1988; Gomez, Egan & Bowers, 1986; Singley &
Anderson, 1987). The choice for this kind of software is obvious. Word
processing is a very general use of computer systems (e.g., Kalén & Allwood,
1991; Penrose & Seiford, 1988). For many people, the use of a word processor

 CHAPTER 1

16

is their primary interface with a computer. More importantly, in most
instances, word processing is the novice user's introduction to using a
computer.
 Given the widespread use of word processors by novice computer users, it
is interesting to study how the operation of these applications is learned. The
key question here is which factors influence a person's success in learning to
use these systems. The answer to this question may be used as input to the
design of future word processing packages and to the design of training
programs and materials.
 Word processing is a procedural task that can be described as a set of skills
that are performed in a relatively fixed order. Learning word processing
comes down to learning these skills and the knowledge that is relevant to it.
More specifically, the information to be learned can be classified as
knowledge and skills that (a) specifically relate to the word processor at hand,
(b) may be transferred (either positively or negatively) from the use of similar
devices (e.g., a typewriter), and (c) relate to the underlying task domain (i.e.,
writing and styling text). This classification is illustrated in Table 1.1.
 In learning word processing, the categories from Table 1.1 differ with
regard to their relevance. Most of the knowledge and skills pertaining to the
styling of text and to the writing process in itself are not conditional to
learning to use a word processor. Hence, the instruction can, and should, start
from the users' prior knowledge and skills of the task domain. Furthermore,
the instruction can partly fit in with the knowledge and skills that are familiar
from typewriting. Knowledge and skills that transfer positively from
typewriting to word processing need not be addressed (e.g., typing, the use of
the TAB key); additional explanation should only be given in case of negative
transfer to prevent users from making errors (e.g., using the space bar to move
across the screen instead of the cursor keys; see Allwood & Eliason (1987)
and Douglas & Moran (1983) for an overview of typewriter analogy errors).
As novice users have no command of the knowledge and skills required to
operate the word processor, all of this information should be covered in the
instruction.
 Clearly, instruction for novice users should not cover every possible aspect
of the word processor. Only basic tasks in operating the program (i.e., initial
skills) should be addressed. In word processing, these fundamental activities
are characterized by the following cycle: (1) starting the program, (2) typing
text or retrieving an existing document, (3) formatting, saving, and printing
the document, and (4) ending the program (cf. Boeke, 1990). A complete
overview of the basic word processing tasks is presented in Appendix 1.

GENERAL INTRODUCTION

17

Table 1.1
Illustrative classification of knowledge and skills in word processing

 Knowledge Skill

Word
processor

• terms like 'cursor', 'printer',
'macro'

• text looks differently on
paper than on screen

• hidden codes can be revealed

• moving or copying a block of
text

• using the thesaurus
• saving a document
• creating macros and styles

Typewriter • line transport within
paragraphs

• the QWERTY keyboard
• the function of the TAB key

and the SHIFT key

• inserting a blank line
• changing the line spacing
• typing text (upper-case and

lower-case letters)
• underlining text

Task domain • the layout of a letter
• terms like 'footnote',

'typeface', 'margins'
• the difference between

'subscript' and 'superscript'

• writing in a terse style
• using grammar correctly
• styling a text

Note. This table merely illustrates the classification of knowledge and skills in word processing.
It is therefore not meant to be exhausting.

 As their learning preferences indicate, novices want to engage in real,
coherent tasks instead of contrived drill and practice exercises (Cuthbert,
1992; Wright, 1988). The instruction should comply with this desire by
focussing on how the basic word processing tasks are to be performed.
Moreover, the sequencing of these tasks in the instruction should be in
accordance with the above-mentioned cycle. In a way, users should see
themselves using the program while reading the training material.

1.4 Instructional material

In general, there are three approaches to teaching basic computer skills. Still
the most current (and perhaps the most obvious) one is by paper documen-
tation. The second way to train users is by presenting information on the
screen. Examples of this increasingly used technique are help-screens, on-line
documentation, and computer assisted instruction. A third possibility is by an
instructor-based training program. Because of its clear benefits (e.g., low
costs, high availability, easy accessibility), manufacturers often prefer paper
documentation. Its widespread use is likely to expand even further, as written

 CHAPTER 1

18

documentation is increasingly considered a necessity to satisfy legal
constraints concerning product liability. Therefore, the focus will be on paper
documentation (i.e., manuals).
 There are many different types of manuals, each of which has a specific
audience or covers a specific function. Two main categories are being
distinguished: instruction and reference. Instruction manuals teach people how
to operate a system or how to use a program. Reference documentation gives
users key definitions, facts, commands, and codes they cannot be expected to
memorize (Weiss, 1991). Instruction manuals are further classified into
tutorials and user guides. Tutorials have an educational intent. They teach
basic skills to users who have never used the product before. User guides are
designed for the more experienced user. They contain exhaustive explanations
of simple to very complex tasks associated with using a piece of hardware or
software.
 Matching the document type with the user group's information needs
indicates that novice users are best served by a tutorial manual. This type of
manual is defined as "instructional information which familiarizes users with
a new piece of hardware or software and teaches them the rudiments of their
use" (Bradford, 1984, p.167). Effective tutorials should thus present users
with the basics they need to get started with a program.
 Tutorial documentation does not only teach certain basic skills; it also
stands alone in doing so. A tutorial is therefore a typical example of self-
instruction material. It is an instructional tool that users should be able to use
independently, without any supplementary assistance. This requires tutorials
to be flexible enough to be self-explanatory to a wide variety of users. The
absence of an instructor implies further that a tutorial should motivate users
and maintain their motivation throughout training.
 To meet these requirements, it is useful to follow a systematic approach in
designing and writing tutorial documentation. In general, there are two
approaches, differing with regard to their primary focus (Rowntree, 1986). In
a subject-matter oriented approach the primary focus is on the content of the
instruction. In a learner oriented approach the designer first looks at the
features of the target audience. As tutorials are intended for learners with
divergent backgrounds, information needs, and learning preferences, an
instructional design theory that takes these features as a starting point for
design is called for. Developing (a part of) such a design theory then becomes
the central theme of this thesis.

GENERAL INTRODUCTION

19

1.5 Instructional design theory

Having defined the principal components of learning to use a computer
program, the problem description is reformulated into a more detailed
research question:

What instructional design principles should be applied in
paper tutorial manuals for teaching novice computer
users elementary word processing skills?

 To answer this question, a design theory known as minimalism2 is used
(Carroll, 1984a,b, 1990). Dating from the early 1980s, minimalism is a
relatively new design theory, developed especially for designing self-instruc-
tion materials with which users can learn to use computer programs.
 The minimalist approach is learner oriented. In this respect, Kerr and
Payne (1994) stated that "the term 'minimalist' denotes a broad instructional
philosophy, in which the design of instructional materials seeks to interfere
with the learner's purposes and motivations as little as possible." (p. 4). In
turn, Carroll (1990) outlined the rationale for the minimalist approach as
follows: "The key idea in the minimalist approach is to present the smallest
possible obstacle to learners' efforts, to accommodate, even exploit, the
learning strategies that cause problems for learners using systematic instruc-
tional materials. The goal is to let users get more out of the training ex-
perience by providing a less overt training structure." (pp. 77-78).
 Following from this rationale, minimalist instruction is action oriented in
that it offers learners little to read and much to do. Minimalist training
material invites users to get started immediately on real and meaningful tasks
and frequently encourages them to explore the program. Throughout training,
only information that is essential for working with the program is explained.
This explanation is always motivated in the task. That is, it is presented
immediately before or after the relevant action steps describing what
something 'does' rather than what it 'is'. In addition, ample support is given for
recovering errors that may occur during task execution. This information too
is presented 'in context': it appears in the instructional text, directly after the
actions it refers to. (A more detailed description of the minimalist approach is
presented in chapter 2).
 The minimalist approach has revealed some promising results. Research
has shown that people who used a minimal manual (i.e., a manual designed
according to the minimalist approach) learned to use a word processor in 40%
less time with 58% better retention of skills than people who used the

2in the literature, this design theory is also referred to as "the minimalist approach".

 CHAPTER 1

20

commercially available control manual. Moreover, they made 20% fewer
errors and were significantly more efficient in error-recovery (Carroll, Smith-
Kerker, Ford & Mazur-Rimetz, 1987).
 The minimalist approach and its claims of effectiveness have raised some
criticism. Perhaps one of the most important arguments here is that minimalist
instruction is not clearly defined (yet). A gradually changing set of features
has been imposed on minimalist training materials. A related problem is the
absence of explicit guidelines for designing minimalist training materials,
making it difficult to ascribe the above results to distinct features of the
instruction. In addition, there is little sound empirical evidence on the
functionality of the minimalist approach. Although the first experimental
results were quite impressive, the replicability and construct validity of these
studies call for some concern.

1.6 Overview of the thesis

The work that is reported in this thesis attempts to solve these problems.
Chapter 2 contains an operational definition of the minimalist approach. The
succeeding chapter reports on an investigation into the functionality of this
approach. In this experiment, a minimal manual that was designed according
to the principles presented in chapter 2 was compared with a state-of-the-art
tutorial.
 The outcomes of this experiment served as a starting point for the research
presented in chapter 4 to 6. The study in chapter 4 is an early attempt to reveal
the effect of a single minimalist principle (i.e., error-information) on learning
outcomes. In chapter 5 the preconditions for error-information to affect the
users' performance during practice are identified and examined in an
exploratory fashion.
 The effect of error-information on user behavior is also the subject of the
experiment described in chapter 6. This experiment was designed according to
the requirements identified in chapter 5. The study is a detailed investigation
into the effect of error-information on users' learning activities and learning
outcomes. Chapter 7 presents a general discussion of the work in this thesis.

References

Allwood, C.M. (1986). Novices on the computer: A review of the literature. International

Journal of Man-Machine Studies, 25, 633 - 658.

GENERAL INTRODUCTION

21

Allwood, C.M., & Eliasson, M. (1987). Analogy and other sources of difficulty in novices'
very first text-editing. International Journal of Man-Machine Studies, 27, 1 - 22.

Boeke, H. (1990). Werken met WordPerfect [Working with WordPerfect]. Amsterdam:
GW Boeken.

Bovair, S., Kieras, D.E., & Polson, P.G. (1990). The acquisition and performance of text-
editing skill: A cognitive complexity analysis. Human-Computer Interaction, 5, 1 - 48.

Bradford, A.N. (1984). Conceptual differences between the display screen and the printed
page. Technical Communication, 3, 13 - 16.

Brockmann, R.J. (1990). Writing better computer user documentation: From paper to
hypertext (2nd. edition). New York: Wiley.

Carroll, J.M. (1984a). Minimalist design for active users. In B. Shackle (Ed.), Interact'84:
First IFIP Conference on Human Computer Interaction (pp. 621 - 626). Amsterdam:
Elsevier.

Carroll, J.M. (1984b). Minimalist training. Datamation, 30, 125 - 136.
Carroll, J.M. (1990) The Nürnberg Funnel: Designing minimalist instruction for practical

computer skill. Cambridge: MIT Press.
Carroll, J.M., & Carrithers, C. (1984). Blocking learner error states in a training-wheels

system. Human Factors, 26, 377 - 389.
Carroll, J.M., & Rosson, M.B. (1987). Paradox of the active user. In J.M. Carroll (Ed.),

Interfacing thought: Cognitive aspects of human-computer interaction (pp. 80 - 111).
Cambridge: MIT Press.

Carroll, J.M., Smith-Kerker, P.L., Ford, J.R., & Mazur-Rimetz, S.A. (1987). The minimal
manual. Human-Computer Interaction, 3, 123 - 153.

Charney, D.H., Reder, L.M. (1986). Designing interactive tutorials for computer users.
Human-Computer Interaction, 2, 297-317.

Chin, D.N. (1986). User modeling in UC, the UNIX consultant. In M. Mantei & P.
Orberton (Eds.), Human factors in computing systems-III: Proceedings of the CHI'86
conference (pp. 24 - 28). Amsterdam: Elsevier.

Cuthbert, P. (1992). Concepts not keystrokes - Can we improve our teaching of word
processing? Computer Education, 72, 2 - 5

Czaja, S., Hammond, K., Blascovich, J.J., & Swede, H. (1986). Learning to use a word
processor as a function of training strategy. Behaviour and Information Technology, 5,
203 - 216.

Douglas, S.A., & Moran, T.P. (1983). Learning text editor semantics by analogy. In A.
Janda (Ed.), Human factors in computing systems: Proceedings of the CHI'83
conference (pp. 207 - 211). Amsterdam: Elsevier.

Foss, D.J., Smith-Kerker, P.L., & Rosson, M.B. (1987). On comprehending a computer
manual: analysis of variables affecting performance. International Journal of Man-
Machine Studies, 26, 277 - 300.

Frese, M., Albrecht, K., Altmann, A., Lang, J. Von Papstein, P., Peyerl, R., Prümper, J.,
Schulte-Göcking, H., Wankmüller, I. and Wendel, R. (1988). The effect of an active
development of the mental model in the training process: Experimental results in a
word processing system. Behaviour and Information Technology, 7, 295 - 304.

Gomez, L.M., Egan, D.E., & Bowers, C. (1986). Learning to use a text editor: Some learner
characteristics that predict success. Human-Computer Interaction, 2, 1 - 23.

Kalén, T., & Allwood, C.M. (1991). A survey of the training of computer users in Swedish
companies. Behaviour & Information Technology, 10, 81 - 90.

 CHAPTER 1

22

Kerr, M.P., & Payne, S.J. (1994). Learning to use a speadsheet by doing and by watching.
Interacting with Computers, 6, 3 - 22.

Knowles, M.S. (1984). The adult learner: A neglected species (3rd. edition). Houston:
Gulf.

Mack, R.L., Lewis, C.H., & Carroll, J.M. (1987). Learning to use word processors:
Problems and prospects. In R.M. Baeker & W.S. Buxton (Eds.), Readings in human-
computer interaction: A multidisciplinary approach (pp. 269 - 277). Los Altos: Morgan
Kaufmann.

Moran, T.P. (1981). An applied psychology of the user. Computing Surveys, 13, 1 - 11.
Penrose, J.M., & Seiford, L.M. (1988). Microcomputer users' preferences for software

documentation: An analysis. Journal of Technical Writing and Communication, 18,
355 - 366.

Pirsig, R.M. (1974). Zen and the art of motorcycle maintenance. New York: William
Morrow.

Redish, J.C. (1988). Reading to learn to do. The Technical Writing Teacher, 15, 223 - 233.
Rowntree, D. (1986). Teaching through self-instruction. London: Kogan Page.
Schriver, K.A. (1986). Designing computer documentation: a review of the relevant

literature (Tech. Rep. No. 31). Pittsburgh: Carnegie-Mellon University, Com-
munications Design Center.

Sein, M.K., & Bostrom, R.P. (1989). Individual differences and conceptual models in
training novice users. Human-Computer Interaction, 4, 197 - 229.

Singley, M.K., & Anderson, J.R. (1987). A keystroke analysis of learning and transfer in
text editing. Human-Computer Interaction, 3, 223 - 274.

Weiss, E.H. (1991). How to write usable user documentation (2nd. edition). Phoenix: Oryx
Press.

Wright, P. (1988). Communicating with the user. In N. Heaton & M. Sinclair (Eds.),
Designing end-user interfaces (Pergamon State of the Art Report No. 15:8 pp. 121 -
129).

 23

CHAPTER 2

The minimalist approach to tutorial
documentation3

In an effort to improve tutorial documentation for first-time
computer users, Carroll and his colleagues at IBM designed a so-
called minimal manual. Unfortunately, ever since its develop-
ment it has been somewhat unclear what is meant by a minimal
manual. In this chapter an attempt is made to provide an
operational definition of the minimalist approach to tutorial
documentation. For that purpose, the origin and characteristics
of Carroll's minimal manual are reviewed. Directions for
research on minimalism are identified.

2.1 Introduction

Until the 1970s, computers were used almost exclusively by engineers and
programmers. This selected audience of experts was assumed to be capable of
and willing to invest time and effort in really getting to know a program.
Computer documentation was developed accordingly; document designers
hardly needed to worry about instructional design issues such as presentation
forms, principles of sequence, instructional objectives, and motivation
(Carroll & Carrithers, 1984; Maynard, 1979).
 With the advent of the microcomputer in the late 1970s, computer
programs for office and home use became available, and a different audience
emerged. This audience had no background in computer science, program-
ming, or electronics, and it had little or no inclination to gain fundamental
understanding of a program. Their learning preferences were relatively
simple: they wanted to learn to use a program as fast as possible.
 Documenters at first did not realize that this shift of training needs also
changed the demands made on their work. It was only after their companies
found out that a good manual was a selling point for software products (Sohr,

3based on: (a) Lazonder, A.W., & Van der Meij. H. (1992). Towards an operational
definition of the minimal manual (Tech. Rep. IST-MEMO-92-02). Enschede:
University of Twente, Department of Instructional Technology; and (b) Van der Meij,
H., & Lazonder, A.W. (1993). Assessment of the minimalist approach to computer
user documentation. Interacting with Computers, 5, 355-370.

 CHAPTER 2

24

1983) that they began to take this issue seriously. In the early 1980s,
documentation thus became a specialized job, which, among others, directed
technical writers toward producing manuals especially for novice users. This,
in turn, led to a range of handbooks on how to develop effective computer
documentation (e.g., Brockmann, 1986; Crandall, 1987; Foehr & Cross, 1986;
Grimm, 1987; Price, 1984; Steehouder, 1989).
 In 19844, Carroll's minimal manual signaled a distinct new approach to
computer user documentation (Carroll, 1984a,b). Carroll introduced a
typically short tutorial that differed from the then-existing manuals in that it
complied with novice users' desire for quick and self-controlled hands-on
experience. This manual was 'minimal' in the sense that it was a flexible guide
in which concise instruction was alternated with ample opportunity to engage
in meaningful interactions with the program.
 Practical findings indicated that the minimal manual was highly successful.
Apparently, it succeeded in meeting the learning preferences of first-time
users: they frequently expressed their satisfaction with the manual for it
allowed them to learn to use the program by actually working with it instead
of reading about it (e.g., Arnold, 1988; Black, Bechtold, Mitrani & Carroll,
1989; Carroll, Smith-Kerker, Ford & Mazur, 1986). Other studies have shown
that the use of a minimal manual also improved the users' skills in operating
the program (e.g., Carroll, Smith-Kerker, Ford & Mazur-Rimetz, 1987; Gong
& Elkerton, 1990; Vanderlinden, Cocklin & McKita, 1988).
 Unfortunately, it is not entirely clear which instructional design principles
contribute to the success of the minimal manual. Although its major features
have been properly described (Carroll, 1990b), it is difficult to identify the
specific rules on which the design of a minimal manual is based. In this
chapter an attempt is made to designate these design rules. First, a brief
historical sketch is given, illustrating both the reason for developing the
minimal manual and its precursor. Then the characteristic features of the
minimal manual are described. This description comes in the form of an
operational definition in that it presents an overview of the design principles
that underlie the minimalist approach. In the discussion directions for research
on minimalism are presented.

4actually, Carroll started working on the minimal manual in 1982, but the work was
not cleared for discussion outside IBM until 1984 (Carroll, pers. comm.)

THE MINIMAL MANUAL: IS LESS REALLY MORE?

25

2.2 Origin of the minimal manual

The minimal manual was first introduced by Carroll (1984a,b). Its conception
was prompted by the considerable difficulties people encountered when
learning to use a computer program. To understand these problems, and to
find ways to overcome them, several observation studies were conducted (e.g.,
Carroll, 1982; Carroll & Mack, 1984; Rosson, 1984). These observations and
the early attempts to solve the users' problems gave rise to the development of
the minimal manual.

2.2.1 RAISON D'ETRE
Many people experience the process of becoming proficient with a new
computer program as a difficult and sometimes even daunting endeavor. To a
great extent, their training problems depend on the idiosyncratic details of the
software. That is, first-time users often have difficulties understanding the
program's prompts, its interface, and its commands. Considering these
problems in a wider context, they can be classified as problems with software
and problems with manuals.
 Some software problems are caused by 'inconsistencies' in the program. In
early word processors, for example, the function of the ESC key often
depended on the program state. It served as an undo button in the command
mode but as a shortcut to quitting the program in the text mode. Software
problems may also result from a poor interface. In multi-layered programs like
data-base or spread-sheet applications, new users often have trouble keeping
track of the relevant contexts. In addition, many of the program's command
names are potentially confusing and make little sense to novice users.
Problems also arise when the program gives mysterious and ineffective error
messages. For example, to first-time users prompts like "general EXEC failure"
merely indicate that something has gone wrong. The expression EXEC does
not explain what the user did wrong, and the message contains no information
on how to correct the error.
 Most of these problems can, at least in theory, be overcome by good
documentation. In fact, manuals that addressed these problems were state-of-
the-art in the early 1980s. These manuals gave exhaustive descriptions of the
different functions of keys before they were to be used. They explicitly
defined the structure and operation of the program on the basis of various
screendumps and detailed specifications of the actions to be performed. Some
manuals even contained a separate trouble-shooting section that listed possible
error-messages.

 CHAPTER 2

26

 However, these manuals did not eliminate the new users' problems with the
software. Rather, it turned out that new users often had problems with the
manual itself. According to Carroll (Carroll, 1982, 1984a,b; Carroll & Mack,
1984; see also Mack, Lewis & Carroll, 1983), these problems mainly arose
because the manual did not address the learning styles of new users. His
observations showed that in their very first interaction with a computer
program, new users' actions can be classified into three classes of learning
strategies: learning by doing, by thinking and by knowing.
 New users learn by doing. They tend to be active learners that want to do
things with the program rather than read through endless pages of what they
consider 'just information'. This desire to act comes from the fact that they
often enter the training scene with a clear goal on which they want to start
working right away. They want the manual to tell them what to do − what
keys to press − not why to do it. However, the then-existing tutorials did not
allow users to pursue their personal goals. These manuals expected users to
study lengthy chapters containing program specifications, screendumps, and
other descriptive information. The users' interaction with the program merely
consisted of following programmed exercises, something new users con-
sidered to be passive rather than active.
 New users are also active in that they try to make sense of what happens
while they interact with the program. That is, they learn by thinking. They
tend to reflect upon why the program operates as it does and try to interpret
what appears on the screen. Because new users lack basic knowledge about
how the software operates, their ideas are often incomplete or incorrect. These
misconceptions are a major source of errors which most then-existing tutorials
were unfit to remove. New users tended to skip its long-winded explanations,
and, when they did read them, often had trouble extracting the right
information. In addition, these manuals lacked information to correct the
errors that might result from these misconceptions.
 New users also build on their prior knowledge in developing new
understanding. They learn by knowing. Because adult novices usually have
considerable knowledge of the underlying task domain, they have clear
expectations about how certain tasks are performed on the computer. What
they already know may, however, conflict with what they are trying to learn.
For example, a word processor resembles a typewriter only in some respects.
There are many similarities but also many differences (cf. Allwood &
Eliasson, 1987). Typical errors such as trying to move the cursor by pressing
the space bar may arise because of this typewriter metaphor. Again, most
standard self-instruction manuals offered little support in removing these
misconceptions and correcting the errors that result from them.

THE MINIMAL MANUAL: IS LESS REALLY MORE?

27

Figure 2.1
Example of a guided-exploration card (Adapted from "The Nürnberg Funnel:
Designing minimalist instruction for practical computer skill" (p. 112) by J.M. Carroll,
1992, Cambridge: MIT Press).

2.2.2 HISTORICAL PREDECESSOR
The observations discussed above prompted Carroll and his colleagues to
design instruction that would not only solve new users' software problems but
also their problems with manuals. They developed guided-exploration (GE)
cards for learning to use a word processor (Carroll, 1990b; Carroll, Mack,
Lewis, Grischkowski & Robertson, 1985). This deck of cards summarized the
software's basic functions and they were, of course, intended to comply with
the learning strategies of new users. An example is shown in Figure 2.1.

Typing something

In the terminology of the computer, you will be “creating a document”. Use
the TASK SELECTION menu to tell the computer that you want to create a
document.

You can give your document any name you want, bit you cannot use the
same name for two different documents

You can begin to type when you
see a typing page on the screen

(Think of this display as a blank
piece of paper but remember that
you do not need to worry about
margins or tabs)

Press the bit RET (carriage return) key to start a new line or to skip lines

When you are done typing or want to leave the typing page to do something
else, you want (in terms of the computer) to “end use” of your document.

As you are typing, what you type will appear on the screen

If you cannot get to the CREATE menu, press the ESC key

You will see the TASK SELECTION menu appear and you can then try
again

?

�

 CHAPTER 2

28

 To allow users to learn by doing, each card concentrated on a learning goal
first-time users really want to achieve. For example, 'underlining something' or
'printing a document on paper'. Moreover, the information on the cards was
intentionally left incomplete. Only essential explanations were given and there
was no step-by-step specification of procedures. Instead, only the critical
elements of a procedure were defined. This, in turn, impelled the users to infer
the missing information by reasoning from their own knowledge and
understanding (i.e., learning by thinking).
 Learning by thinking was further supported by checkpoints and remedies.
As users were to fill in procedural details by inferencing and by reasoning,
they were assumed to err frequently. Therefore, information to detect and
correct errors was included. Checkpoints were used to indicate whether the
user was still on the right track, and each card explicitly specified procedures
to correct salient errors. Both means were intended to give users a feeling of
safety and to motivate them to further explore the program.
 The GE-cards also supported learning by knowing in that they were task-
oriented. Each card contained a goal statement that addressed a topic new
users could easily understand from prior knowledge of the underlying task
domain (i.e., routine office typing procedures). Moreover, typewriter
knowledge was exploited and confusions stemming from this analogy were
addressed (i.e., negative transfer, see chapter 1).
 In addition, because new users are willing to achieve personal goals, the
GE-cards used a modular approach. Each card covered a discrete procedure
without reference to material covered on other cards. The GE-cards thus
became a set of independent, unordered cards that could be used in any
sequence. The presentation of the information on the cards was modular as
well. Each card contained a goal statement, hints, checkpoints, and remedies.
These information types were graphically delineated and icons were used to
identify them (see Figure 2.1).

The functionality of the GE-cards was established by Carroll et al. (1985).
They studied 12 novice computer users who learned to use a word processor.
All subjects had experience in typing letters in the office environment but had
no experience in word processing. Half of the group used the GE-cards, the
other half received a commercially developed self-study manual. Both
instructional methods covered the same topics, differing only with regard to
the presentation form: the 25 GE-cards represented the content of 94 pages of
the manual.
 The results indicated that GE-users required 51% less practice time and that
they were significantly faster and better at performing tasks after practice. GE-
users also raised significantly fewer questions about the purpose of an activity

THE MINIMAL MANUAL: IS LESS REALLY MORE?

29

and they were more likely to engage in exploring activities not described on
the cards. Moreover, they detected more errors and more often corrected them
independently.
 When asked how the materials could be improved, the GE-users requested
more explanatory material and better graphical separation of the different
sections of the cards. They also voiced a desire for a more structured training
tool; in particular, they asked for a manual (Carroll et al., 1985, 1987). Based
on these suggestions, Carroll decided to develop a self-study manual that
capitalized on the strengths of the GE-materials and also fulfilled the desire of
learners to have a structured manual. This led to the minimal manual.

2.3 Characteristics of a minimal manual: minimalist principles

Carroll's published work leaves it somewhat obscure what exactly must be
understood by a minimal manual. Since its conception, a gradually changing
set of features has been attributed to the minimal manual. However, in
general, a minimal manual can be defined by four so-called minimalist prin-
ciples: (1) task orientation, (2) text optimization (3) support of error-recovery,
and (4) modularity (Carroll, 1990a,b; Carroll et al., 1987).
 Due to the general nature of these principles, practitioners have repeatedly
called for more detailed guidelines and worked examples on their application
(Hallgren, 1992; Horn, 1992; Nickerson, 1991; Tripp, 1990). To comply with
this request, Carroll's original minimalist principles were specified into more
detailed design principles (see Table 2.1). They are described in the following
sections and illustrated with examples from both the original minimal manual5
and the one used in the experiments described in this thesis (henceforth
referred to as the WordPerfect manual; see Appendix 2).

2.3.1 TASK ORIENTATION
Minimalist instruction focusses on task execution, on functionality for the
user. Its primary goal is to help the novice user accomplish basic tasks. In a
way, a task-oriented manual resembles a cookbook: it provides recipes for all
the things a user might want to do with the software, showing how to use each
command in the context of the recipe. The five design principles that

5the original minimal manual was published as an appendix to Carroll, J.M., Smith-
Kerker, P.L., Ford, J.R., & Mazur, S.A. (1986). The minimal manual (IBM Research
Report No. 11637). Yorktown Heights: IBM.

 CHAPTER 2

30

Table 2.1
Minimalist principles and their corresponding design principles

1. Task orientation
 1.1 Focus on the program's basic functions
 1.2 Treat general methods before specific ones
 1.3 Give the opportunity to act early on
 1.4 Encourage exploration and problem solving
 1.5 Focus on real and familiar tasks

2. Text optimization
 2.1 Do not spell out everything
 2.2 Replace unnecessary jargon by familiar terms
 2.3 Write in short, simple sentences
 2.4 Use an active tone of voice

3. Support of error-recovery
 3.1 Give linkage-information to teach monitoring skills
 3.2 Use a standard formula for error-information
 3.3 Give 'on the spot' error-information
 3.4 Treat general recovery methods before specific ones

4. Modularity
 4.1 Provide closure for chapters
 4.2 Make chapters short
 4.3 Present different information types differently

contribute to the task-oriented nature of the minimal manual are described
below.
 A minimal manual is primarily intended for first-time users. It therefore
deals with the basic functions of a program, using a simple-to-complex
sequence. The minimal manual for WordPerfect first addresses the elementary
tasks in the word processing cycle: typing, saving, revising, and printing a text
(see chapter 1). In the course of practice, these tasks (and their related skills)
are used as a prerequisite for more advanced tasks such as centering text,
changing the typeface, or adjusting margins.
 In explaining a programs' elementary functions, a minimal manual treats
general methods before specific ones. Many of today's application programs
offer more than one method to execute a command. For example, in
WordPerfect there are at least three ways to retrieve a document: (1) by
selecting the RETRIEVE command from the FILE menu, (2) by pressing the F5
key twice, or (3) by typing the filename directly from the DOS-prompt. The

THE MINIMAL MANUAL: IS LESS REALLY MORE?

31

WordPerfect manual uses the menu approach because it closely resembles the
methods that are used to execute other commands.
 According to their learning preferences (see chapter 1), new users typically
have a strong desire to act. The minimal manual supports this desire by giving
users the opportunity to act early on. It emphasizes the procedural part of a
program, leaving out all information that does not directly relate to 'doing
things'. Minimal manuals therefore have no preface, long-winded introduction,
or general description of how the program works. Rather, they give users the
opportunity to act early on. In the WordPerfect manual users receive their first
instructions to act on page 2. In contrast, a brief inventory of commercially
available tutorials for WordPerfect shows that the first instruction normally
appears around page 15 (Van der Meij & Carroll, in press).
 The minimal manual also supports learning by thinking. It invites and even
stimulates users to explore new aspects of the program. Following from the
GE-training materials, this principle has frequently been interpreted as a plea
for leaving out basic action information. This is a mistake, however. All the
necessary action steps for performing a task are described in a minimal
manual. Instead, exploration is encouraged in open-ended exercises and in so-
called 'do it yourself' sections. In both instances, the minimal manual
explicitly relates explorations to a larger framework of goals and methods. In
a way, it guides the users exploratory behavior, thus providing an exploratory
environment in which it is safe to experiment with the program and try things
out on your own (see Appendix 2).
 As the fifth design principle indicates, minimalist instruction is always
anchored, or situated, in the underlying task domain. That is, minimalist
training tasks are real and familiar to the target population. The users' interest
in and understanding of these tasks is what incited them to learn to use the
program in the first place. By designing instruction around these tasks, new
users' learning preferences are met and, consequently, their motivation is
sustained. In Carroll's minimal manual tasks addressed genuine clerical
activities. Trainees were secretaries who, like in their daily work, were asked
to type short memos, revise letters, and create press reports. In the WordPer-
fect manual users (i.e., students) had to perform tasks like typing a short
invitation, revising the minutes of a member's meeting, and changing the lay-
out of a complaint to a telephone company. In contrast, most commercially
developed word processing tutorials expect users to type a full-page sample
text on fictitious topics like wine-producing countries (Mincberg, 1988), an
overview of bookkeeping (Mincberg, 1987), or an incorrect delivery of 10,000
video tapes (Boom, 1990).

 CHAPTER 2

32

2.3.2 TEXT OPTIMIZATION
The second minimalist principle is basically a mixture of design principles
that accounts for the minimal size of the manual. This principle was originally
referred to as 'slashing the verbiage', but, as Table 2.1 shows, there is more to
text optimization than just weeding out the excess. Rather, the text is adapted
to or even 'written around' the users' actions.
 The first design principle is perhaps the only true instance of 'slashing the
verbiage'. It is realized by eliminating or radically cutting down all material
not related to 'doing things'. Thus the minimal manual lacks sections like the
welcome word, introduction, trouble-shooting section, index, and glossary.
Within each chapter repetitions, summaries, reviews, advance organizers, and
the like are also almost entirely absent. Moreover, definitions are operational
instead of conceptual. That is, they are presented in context, immediately
before or after the relevant action steps and describe what something 'does'
rather than what it 'is'. As a result, the chapters in a minimal manual have an
average length of three pages.
 The minimalist call for intentionally incomplete information also means
that information that can easily be inferred is left out. Clearly, it is difficult to
judge when such situations apply. As a rule of thumb, incomplete information
is given when the program provides sufficient support to fill in the missing
directions. A minimal manual exploits the program's prompts by directing the
users' attention to the screen. For example, the minimal manual contains
messages like "Look at the screen. WordPerfect tells you what to do to
actually remove these lines". On the screen, the prompt Delete Block? No
(Yes) appears. Because the manual does not tell users what to do here, they
are forced to do some thinking (inferencing) on their own.
 The second design principle on text optimization refers to the control of
terminology. Because new users have no computer knowledge, computer
terms are incomprehensible to them. In a minimal manual all but the necessary
jargon and technical expressions are therefore substituted by more common
terms. These terms are drawn from the task domain and the users' prior
knowledge. In word processing, for example, terms like blank line and
document are used instead of carriage return and file. The keys are indicated
by their full keyname rather than by some code (e.g., the ENTER key instead of
enter, [enter] or [↵]). In addition, the headings clearly signal the goals users
may want to achieve (e.g., "Changing the margins") instead of the actions the
program can perform (e.g., "Strategies for indenting and aligning text").
 There are two exceptions to this rule. Firstly, the wording of the manual is
at all times in line with the terms that are used in the program's menu choices
and in the system messages. This might lead to inconsistencies (e.g., in
WordPerfect the terms document and file are used interchangeably) which, in

THE MINIMAL MANUAL: IS LESS REALLY MORE?

33

turn, support the notion that a manual can sometimes also be used as symptom
of poor interface design. Secondly, terms that belong to the basic computer
jargon (e.g., printer, diskette, cursor) are not replaced because new users either
know or should get to know these terms.
 The wording of a manual may never stand in the way of the understanding
of its content. That is, reading and understanding the text may never tax the
users' processing capacities. For that reason, sentences in a minimal manual
are short, about 14 words. The minimal manual thus aims at a reading level of
12-year-olds (Flesch, 1964). Sentences use a simple subject-predicate order
and embedded sentences are minimized. On the word level, simple, easy-to-
understand words are used. Long words and slang are avoided as much as
possible.
 A related design principle is the use of an active tone of voice. In a way,
the style of writing should reflect the users' active orientation toward learning.
By using an active tone of voice, the length and complexity of a sentence is
almost automatically reduced. For example, action steps like " You must now
press the ENTER key to save the text you have just typed" can be rewritten as
"Press the ENTER key to save your text" without losing essential information.

2.3.3 SUPPORT OF ERROR-RECOVERY

6
Carroll and his colleagues have been among the first to recognize the
importance of errors in learning to use software. First-time users make many
mistakes, and correcting these mistakes can be very time-consuming (Arnold
& Roe, 1987; Graesser & Murray, 1990; Lazonder & Van der Meij, 1994).
Minimalist instruction therefore not only teaches users how to do things, but
also how to undo the things that have gone wrong. The minimalist design
principles that allow for the development of these so-called corrective skills
are summarized below.
 New users often find it difficult to co-ordinate the processing of manual,
screen, and keyboard (Van der Meij, 1994). When users ignore the screen, it is
unlikely they will discover mistakes. Consequently, errors will pile up, and it
will become increasingly difficult to correct them. To overcome this so-called
'nose-in-the-book syndrome' (Carroll, 1984b; Jansen & Steehouder, 1989) a
minimal manual contains linkage-information. Linkage-information prompts
users to look at the screen and locate information like system cues and
program messages. In Carroll's minimal manual a typical example of linkage-

6 this minimalist principle is central to chapter 4 to 6. For that reason, it is discussed briefly
here.

 CHAPTER 2

34

information reads: "Can you find the letters Repl on the 'status line' at the very
top of the screen?".
 Apart from this regulation process, minimalist instruction also supports the
error-recovery process itself. This process consists of three stages: detection,
diagnosis and correction. In a minimal manual, error-information supports
these stages in a fixed order. Detection comes first, then diagnosis, and then
correction (Lazonder & Van der Meij, 1994). As users who have not made a
mistake may also read the error-information, it is important to present the
detection information as a proviso. In combination with what users might do
next, this leads to the standard "If ... (detection) then ... (cause) then ...
(correction)" formula. Note that the detection part of the error-information
again directs the users' attention to the screen to check if that particular error
has occurred.
 Early detection of an error is especially important for its correction. In a
minimal manual error-information is therefore presented where users need it
most. That is, not in a separate trouble-shooting section but directly after the
actions it refers to. As a rule of thumb, error-information is given when a set
of actions causes (or should cause) a distinct outcome. For example, it appears
in the manual when actions lead to a program message, a print preview, or a
menu on the screen.
 Most programs nowadays have at least two ways to correct an error: a
general and a specific method. A typical example of a general correction
method in the original minimal manual is pressing the CODE + CANCEL key.
Because general methods do not work for all errors, specific strategies like
"Press the F7 key and type an N twice" are sometimes necessary. In line with
design principle 1.1, a minimal manual always treats general correction
methods before specific ones because general methods can be used over and
over again.

2.3.4 MODULARITY
Probably because of its generic nature, modularity is open to many different
interpretations. In minimalist instruction, modularity basically means that it
must be possible to study a chapter without any knowledge of the other
chapters. But, as Carroll's study on GE-cards showed, users are not particularly
fond of a strictly modular approach (Carroll et al., 1985). Therefore, in the
minimal manual modularity is somewhat subsided into the following design
principles.
 One of the main reasons for using a modular approach is to accommodate
browsing (Arnold, 1988). New users do not read their manual cover to cover

THE MINIMAL MANUAL: IS LESS REALLY MORE?

35

Rearranging a block of text

You can rearrange a document by moving, copying or
deleting text. To rearrange, you must always make a
block of the text first.

��������	
��	
�������	�

�������	�
���
���	���		�������
�����������
�������

������
�����

1 Position the cursor at the beginning of the sentence
"Because there is..."

2 Go to the menubar, select the option EDIT and
choose the command BLOCK

3 Press the ENTER key.

�����	��	
�������	�

��������	����
�
����	�����	
����
��������
����
�	���

The prompt Block on appears on the screen. Check if
this is the case.

��	������	
�������	�

�����
	�
����	���	��

��
����
��
���	����������

����
����
�
�	�������
�����

4 Press the (key until the cursor is at the end of the
sentence.

If you cannot block the sentence as a whole, the cursor
was not positioned at the start of the sentence when you
chose the BLOCK command. Press the F1 key to undo the
block function and start again.

�������	
�������	�

������
	�
�����
��
��������
��	�	�����������
�������

����������

You have now made a block of the sentence �

Figure 2.2
Illustration of the information-types in a minimal manual. The right-hand column
describes the various information-types. The left-hand column illustrates their
sequencing and presentation in the manual.

but skip and skim through it in order to attain personal goals (e.g., Penrose &
Seiford, 1988; Rettig, 1991; Scharer, 1983). To meet with this strategy, the
chapters in a minimal manual are self-contained. Each chapter starts afresh
with retrieving or creating a document and ends with saving the revised
document. Explicit cross-references between chapters are not included. In
addition, all chapters start from the basic text of a document; possible changes
to a document are never elaborated on in subsequent chapters. Users who wish
to attend to parts of the manual at will can do so.
 There is, however, no complete modularity in a minimal manual. The first
chapter usually deals with starting the program and is therefore prerequisite to
the rest. But, by and large, the chapters in a minimal manual can be studied
independently. This is not to say that they must be studied randomly.
Following the users' suggestions to improve the GE-cards, the minimal manual
is flexible for study. Users are given the opportunity to study the program in
random order. However, when they do follow the sequencing of the manual,
their training progresses in a simple-to-complex manner (see design principle
1.1).

 CHAPTER 2

36

 Chapters in a minimal manual are short, varying from 2 to 4 pages.
However, even such relatively short chapters may be very demanding for first-
time users. In designing minimal manuals, a hard and fast rule is that 95% of
all users should be able to work through a chapter within 30 minutes (Van der
Meij & Carroll, in press). This proved to be the right time for users to keep
concentrated and motivated. After that, users can either start working on
another chapter or stop training. In the latter case, the short chapters provide
many convenient points to do so.
 Within each chapter modularity means that different information types are
presented differently. A minimal manual usually contains four types of
information: background-information, action-information, linkage-information
and error-information (see Figure 2.2; see also Appendix 2). Various techni-
ques can be used to differentiate them. For example, in the WordPerfect
manual the action-information is signalled by a number. Error-information is
printed in italics. Background-information and linkage-information are put in
roman. However, the prompts in the linkage information are always designed
to resemble the programs' prompt as much as possible (e.g., "Check if the text
Save Document Yes (No) appears on the screen").

2.4 Conclusion

Carroll and his colleagues have laid a good foundation for the development of
better tutorial documentation. Their minimalist approach blazed a new trail by
taking the users' information needs and learning preferences instead of the
program's functions as a starting point for design. This learner oriented
approach is reflected in a set of minimalist principles whose practical
application has already triggered interesting dialogues (e.g., Williams &
Farkas, 1992) and significantly advanced the understanding of how
minimalism can be operationalized.
 Carroll's directions on manual design are not unique for minimalism; some
of the minimalist (design) principles can also be found in other tutorials. Still,
only a limited number of these principles have found their way into practice or
handbooks on manual design. This may be due to the fact that there has been
some controversy over the application of the minimalist principles. To settle
this dispute, this chapter presented a brief, operational definition of the
minimalist approach. Recently, Carroll himself has presented a set of
heuristics that go more deeply into the way the minimalist principles should
be put into practice (Van der Meij & Carroll, in press).
 Empirical studies show that the minimal manual works well (e.g., Black,
Carroll & McGuigan, 1987; Carroll et al., 1987; Gong & Elkerton, 1990;

THE MINIMAL MANUAL: IS LESS REALLY MORE?

37

Vanderlinden, Cocklin & McKita, 1988). The use of a minimal manual
reduced the learning time with approximately 40% in all these studies. It also
cut down the time to complete performance tests and it significantly increased
the retention of skills.
 However, whether a minimal manual will yield similar results in other than
'standard' circumstances is yet unknown. Most studies have focused on
American novices learning to use a word processor. Whether a minimal
manual is equally effective for different audiences is not yet clear. For
example, experienced users might be unsettled by routines they have adopted
from other programs. Consequently, their information needs might best be met
by a manual that impedes this negative transfer by comparing the new
program with other software packages and computer systems. A related
question is whether the minimalists' emphasis on learning by doing fits users
from other cultures. In fact, it has been argued that users with a conceptual,
function-oriented orientation toward learning are unlikely to benefit from the
minimalist approach (Aizu & Amemiya, 1985; Warren, 1994).
 In addition, little is known about the functionality of minimalism for
different programs. Until the 1990s, most experiments were performed with
line-editors which were so user-unfriendly that the tutorial, in a way, had to
make up for the weaknesses of the program. Since the art of designing user-
friendly software has improved during recent years, minimalism might not
yield the same benefits in learning to use a modern full-screen word processor.
In similar fashion, one might question its suitability in domains other than
word processing. For example, is minimalism also applicable in highly
complex or dangerous task domains like welding, radiotherapy, or
cranedriving?
 From a practical viewpoint, little evidence exists that the effect of a
minimal manual can indeed be generalized to other audiences and software
packages. When this research project started in september 1990, European
research on minimalism was scant (cf. Carroll, 1994). Although some studies
examined features of user documentation that can also be found in a minimal
manual (e.g., Frese et al., 1988; Oatley, Meldrum & Draper, 1991; Wendel &
Frese, 1987), the effectiveness of the minimalist approach as a whole had not
yet been established. This notion provides a challenge for research on
minimalist documentation. It also served as a starting point for the present
inquiries into the functionality of the minimalist approach.

 CHAPTER 2

38

References

Aizu, I., & Amemiya, H. (1985). The cultural implications of manual writing and design.

Proceedings of the 32nd. International Technical Communications Conference (pp.
WE 33 - 35). Washington: STC.

Alwood, C.M., & Eliasson, M. (1987). Analogy and other sources of difficulty in novices'
very first text-editing. International Journal of Man-Machine Studies, 27, 1 - 22.

Arnold, B., & Roe, R. (1987). User-errors in human-computer interaction. In M. Frese, E.
Ulich & W. Dzida (Eds.), Psychological issues of human computer interaction in the
workplace (pp. 203 - 220). Amsterdam: Elsevier.

Arnold, W.A. (1988). Learning modules in minimalist documents. Proceedings of the 35th.
International Technical Communications Conference (pp. WE 16 - 19). Washington:
STC.

Black, J.B., Bechtold, J.S., Mitrani, M., & Carroll, J.M. (1989). On-line tutorials: What
kind of inference leads to the most effective learning?. CHI'89 Conference Proceedings
(pp. 81 - 83). Austin: ACM.

Boom, M. (1990). Learning Word for windows now. Redmond: Microsoft press.
Brockmann, R.J. (1986). Writing better computer user documentation: From paper to

hypertext (1st. edition). New York: Wiley.
Carroll, J.M. (1982). The adventure of getting to know a computer. Computer, 15, 49 - 58.
Carroll, J.M. (1984a). Minimalist design for active users. In B. Shackle (Ed.), Interact'84:

First IFIP Conference on Human Computer Interaction (pp. 621 - 626). Amsterdam:
Elsevier.

Carroll, J.M. (1984b). Minimalist training. Datamation, 30, 125 - 136.
Carroll, J.M. (1990a) An overview of minimalist instruction. Proceedings of the twenty-

third annual Hawaii international conference on systems sciences (pp. 210 - 219).
Washington: IEEE Computer Society.

Carroll, J.M. (1990b) The Nürnberg Funnel: Designing minimalist instruction for practical
computer skill. Cambridge: MIT Press.

Carroll, J.M. (1994). Techniques for minimalist documentation and user interface design.
In M. Steehouder, C. Jansen, P. van der Poort & R. Verheijen (Eds.), Quality of
technical documentation (pp. 67 - 76). Amsterdam: Rodopi.

Carroll, J.M., & Carrithers, C. (1984). Blocking learner error states in a training-wheels
system. Human Factors, 26, 377 - 389.

Carroll, J.M., & Mack, R.L. (1984). Learning to use a word processor: By doing, by
thinking and by knowing. In J.C. Thomas & M.L. Schneider (Eds.), Human factors in
computer systems (pp. 13 - 51). Norwood: Ablex.

Carroll, J.M., Mack, R.L., Lewis, C.H., Grischkowski, N.L., & Robertson, S.R. (1985).
Exploring exploring a word processor. Human Computer Interaction, 1, 283 - 307.

Carroll, J.M., Smith-Kerker, P.L., Ford, J.R., & Mazur, S.A. (1986). The minimal manual
(IBM Research Report No. 11637). Yorktown Heights: IBM.

Carroll, J.M., Smith-Kerker, P.L., Ford, J.R., & Mazur-Rimetz, S.A. (1987). The minimal
manual. Human Computer Interaction, 3, 123 - 153.

Crandall, J.A. (1987). How to write tutorial documentation. Englewood Cliffs: Prentice
Hall.

Flesh, R. (1964). The ABC of style: A guide to plain English. New York: Harper & Row.

THE MINIMAL MANUAL: IS LESS REALLY MORE?

39

Foehr, T., & Cross, T.B. (1986). The soft side of software: A management approach to
computer documentation. New York: Wiley.

Frese, M., Albrecht, K., Altmann, A., Lang, J. Von Papstein, P., Peyerl, R., Prümper, J.,
Schulte-Göcking, H., Wankmüller, I. and Wendel, R. (1988). The effect of an active
development of the mental model in the training process: Experimental results in a
word processing system. Behaviour and Information Technology, 7, 295 - 304.

Gong, R., & Elkerton, J. (1990). Designing minimal documentation using a GOMS model:
A usability evaluation of an engineering approach. CHI'90 Proceedings (pp. 99 - 106).
New York: ACM.

Graesser, A.C., & Murray, K. (1990). A question-answering methodology for exploring a
user's acquisition and knowledge of a computer environment. In S.P. Robertson, W.
Zachary & J.B. Black (Eds.), Cognition, computing and cooperation (pp. 237 - 267).
Norwood: Ablex.

Grimm, S.J. (1987). How to write computer documentation for users (2nd. edition). New
York: Van Norstrand Reinhold.

Hallgren, C. (1992). The Nürnberg Funnel: A minimal collection. The Journal of Computer
Documentation, 16, 11-17.

Horn, R.E. (1992). Commentary on the Nürnberg Funnel. The Journal of Computer
Documentation, 16, 3-11.

Jansen, C.J.M., & Steehouder, M.F. (1989). Taalverkeersproblemen tussen overheid en
burger [Linguistic interaction problems between government and civilian]. PhD thesis,
Utrecht University, Utrecht, The Netherlands.

Lazonder, A.W., & Van der Meij, H. (1994). Towards a theory of effective error control in
computer documentation. In F.P.C.M. de Jong & B.H.A.M. Van Hout-Wolters (Eds.),
Process-oriented instruction and learning from text (pp. 165 - 174). Amsterdam: VU
University Press.

Mack, R.L., Lewis, C.H., & Carroll, J.M. (1983). Learning to use a word processor:
Problems and prospects. ACM Transactions on Office Information Systems, 1, 254 -
271.

Maynard, J. (1979). A user-driven approach to better user manuals. Computer, 1, 72 - 75.
Mincberg, M. (1987). WordPerfect made easy. Berkeley: McGraw-Hill.
Mincberg, M. (1988). WordPerfect: Secrets, solutions and shortcuts. Berkeley: McGraw-

Hill.
Nickerson, R.S. (1991). A minimalist approach to 'the paradox of sensemaking'.

Educational Researcher, 20, 24 - 26.
Oatley, K., Meldrum, M.C., & Draper, S.W. (1991). Evaluating self-instruction by minimal

manual and by video for a feature of a word-processing system. Unpublished
manuscript, University of Glasgow.

Penrose, J.M., & Seiford, L.M. (1988). Microcomputer users' preferences for software
documentation: An analysis. Journal of Technical Writing and Communication, 18,
355 - 366.

Price, J. (1984). How to write a computer manual: A handbook of software documentation.
Menlo Park: Benjamin Cummings.

Rettig, M. (1991). Nobody reads documentation. Communications of the ACM, 34, 19 - 24.
Rosson, M.B. (1984). Patterns of experience in text editing. Proceedings of the CHI'83

Conference on Human Factors in Computing Systems (pp. 171 - 175). New York:
ACM.

 CHAPTER 2

40

Scharer, L.L. (1983). User training: Less is more. Datamation, 29, 175 - 182.
Sohr, D. (1983). Better software manuals, your companies' survival may depend on them.

Byte, 8, 186 - 294.
Steehouder, M.F. (1989). Gids voor het schrijven van computerhandleidingen [Guide for

writing computer documentation]. Enschede: Universtiteit Twente, Vakgroep
Toegepaste Taalkunde.

Tripp, S.D. (1990). Book review of: The Nürnberg Funnel. Educational Technology:
Research and Development, 38, 87 - 90.

Van der Meij, H. (1994). Catching the user in the act. In M. Steehouder, C. Jansen, P. van
der Poort & R. Verheijen (Eds.), Quality of technical documentation (pp. 201 - 210).
Amsterdam: Rodopi.

Van der Meij, H., & Carroll, J.M. (in press). Principles and heuristics for designing
minimalist instruction. Technical Communication.

Vanderlinden, G., Cocklin, T.G., & McKita, M. (1988). Testing and developing minimalist
tutorials; A case history. Proceedings of the 35th International Technical
Communications Conference (pp. RET 196 - 199). Washington: STC.

Warren, T.L. (1994). Issues in internationalization of documentation: Quality control. In M.
Steehouder, C. Jansen, P. van der Poort & R. Verheijen (Eds.), Quality of technical
documentation (pp. 171 - 184). Amsterdam: Rodopi.

Wendel, R., & Frese, M. (1987). Developing exploratory strategies in training: The general
approach and a specific example for manual use. In H.J. Bullinger, B. Schackel & K.
Kornwachs (Eds.), Proceedings of the second IFIP conference on human-computer
interaction (pp. 943 - 948). Amsterdam: Elsevier.

Williams, T.R., & Farkas, D.K. (1992). Minimalism reconsidered: Should we design
documentation for exploratory learning? SIGCHI Bulletin, 24, 41 - 50.

 41

CHAPTER 3

The minimal manual: Is less really more? 7

Carroll, Smith-Kerker, Ford and Mazur-Rimetz (1987) have
introduced the minimal manual as an alternative to traditional
self-study manuals. While their research indicates strong gains,
only a few attempts have been made to validate their findings.
This study attempts to replicate and extend the original study of
Carroll et al. Sixty-four first-year Dutch university students were
randomly assigned to a minimal manual or a standard self-study
manual for introducing the use of a word processor. During
training, all students read the manual and worked training tasks
on the computer. Learning outcomes were assessed with a
performance test and a motivation questionnaire. The results
closely resembled those of the original study: minimalist users
learned faster and better. The students' computer experience
affected performance as well. Experienced subjects performed
better on retention and transfer items than subjects with little or
no computer experience. Manual type did not interact with prior
computer experience. The minimal manual is therefore con-
sidered an effective and efficient means for teaching people with
divergent computer experience the basics of word processing.
Expansions of the minimalist approach are proposed.

3.1 Introduction

Computers have gradually become ubiquitous over the past ten years.
Initially, computer users were highly trained engineers, mathematicians or
programmers. Now the majority of users are interested lay people with little
or no computer knowledge. This new audience has different documentation
needs, which companies began to take seriously after finding out that a good
manual could clinch a sale (e.g., Foss, Smith-Kerker & Rosson, 1987;
Jensen & Osguthorpe, 1985; O'Malley et al., 1983; Paxton & Turner, 1984).
One of the ways in which companies have been able to adapt and upgrade
their documentation is through extensive analyses of the behavior of the
novice user.

7 Lazonder, A.W., & Van der Meij, H. (1993). The minimal manual: Is less really more?
International Journal of Man-Machine Studies, 39, 729 – 752 (with minor modifications).

 CHAPTER 4

42

 These studies have indicated that first-time computer users have
relatively simple training needs. They want to get to know how to operate a
computer program, and they want to get to know it fast (Carroll, 1990b,
Scharer, 1983). They are not interested in detailed information on how the
computer or software works. Rather, they want to 'read to learn to do'
(Redish, 1988).
 First-time users also frequently depart from the prescribed paths in their
manuals. That is, they often explore the functions of the program on their
own. Mistakes abound during these explorations and users expect the
manual to help them with these problems (Cuff, 1980).
 Traditional self-study manuals do not subscribe to these needs. This may
explain why some research has indicated that only 14% of the users actually
read the manual (Penrose & Seiford, 1988). Prompted by this misfit, Carroll
and his associates have put forth a radically new approach to documentation
(Carroll, 1990a,b; Carroll, Smith-Kerker, Ford & Mazur-Rimetz, 1987).
Their observations of the behavior of first-time users led to the development
of a minimal manual (MM) for teaching novices how to use a computer
program.
 Research on minimal manuals has only recently started to emerge (e.g.,
Frese et al., 1988; Gong & Elkerton, 1990; Olfman & Bostrom, 1988;
Raban, 1988; Ramsay & Oatley, 1992; Vanderlinden, Cocklin & McKita,
1988; Wendel & Frese, 1987). All of these studies suggest that a MM is
better than a traditional self-study manual (SS). It is difficult to draw a clear
conclusion from these studies, however. They often do not give an explicit
account of the principles used to design the MM and the experimental
design of some of these studies calls for a little caution.
 The main objective of this study is to find additional evidence for the
functionality of the minimalist approach to first-time user documentation.
Before presenting the study, it is important to detail the various ways in
which it has examined the claims of minimalism and how it seeks to
broaden the original experiment of Carroll et al. (1987).
 Firstly, an important critique of minimalism is that Carroll and his
colleagues have not given enough examples and explicit design rules for
creating a MM (Hallgren, 1992; Horn, 1992; Nickerson, 1991; Tripp, 1990).
We found this criticism to be only partially just. Whereas the major points
of departure have been well described in various papers and in Carroll's
book The Nürnberg Funnel (1990b), we also felt a need for more detailed,
design-oriented guidelines. Therefore, we studied Carroll's original MM in
order to discover the various design rules that are subsumed under the four
major principles. In this and other papers we have outlined these design
rules (Lazonder & Van der Meij, 1992; Van der Meij, 1992; Van der Meij

THE MINIMAL MANUAL: IS LESS REALLY MORE?

43

& Lazonder, 1992, see also chapter 2).
 Secondly, another point of criticism against Carroll has been the lack of
a fair comparison between manuals. One critic has raised the question of
whether the control manual is a good example of its kind (Nickerson, 1991).
In the present study, both the MM and the control manual were created
especially for the experiment in order to have a well-controlled
manipulation. The two manuals shared the same basic content and menu-
oriented approach to the software, but they obviously differed in their
design principles. In addition, both manuals were pilot tested and revised on
the basis of the test findings and comments of experts. In short, both
manuals are probably good representatives of their approaches to
documentation.
 Thirdly, the study examines whether computer experience contributes to
the effects of the MM. Until now, almost no other study on minimalism has
examined this contribution. As more and more people develop computer
knowledge and skill, it becomes more important to discover whether
minimalism works for people with divergent computer experience (cf.
Oatley, Meldrum & Draper, 1989).
 Fourthly, the initial development of a MM was stimulated by the bad
press for conventional manuals. Carroll et al. (1987) wanted to create a
manual that would adapt as much as possible to the users' preferences and
processing of paper documentation. As a result, the MM is supposed to be
better suited to what users want from a manual. It should, therefore, lead to
a more positive motivation than a conventional manual. This effect on
motivation has not yet been studied.
 Fifthly, it is interesting to find out whether minimalism also works in a
context that differs in many ways from Carroll's original study. This study
does so. We used different materials, a different software system, different
kinds of subjects from a different country with a different language. Perhaps
the most vital question of these is whether the procedural approach of
minimalism, as opposed to a conceptual one, works for other than American
cultures. There is, for example, some indication that the Japanese are un-
likely to benefit from a MM (Aizu & Amemiya, 1985; Mackin, 1989;
Stevensen, 1992). Firstly, the manual's direct action statements might
contrast with their notion of politeness. Secondly, the procedural approach
of the MM contrasts with their conceptual orientation towards learning.
Likewise, some people have expressed doubts whether it fits the Europeans
(Brockmann, personal communication). In short, it is important to find out
whether the minimalist approach works for European subjects (cf. Ramsay
& Oatley, 1992; Wendel & Frese, 1987).
 The present study thus attempts to validate and expand the work of

 CHAPTER 4

44

Carroll et al. (1987) in several ways. The study examined the effect of
manual type and computer experience on two classes of dependent
measures: procedural skill and motivation. Procedural skill was
operationally defined by the same measures (e.g., shorter learning time,
better test-performances) used in the original study of Carroll et al. (1987).
For motivation, the study measured attention, relevance, confidence, and
satisfaction (Keller, 1983, 1987).
 In line with Carroll et al.'s findings, the MM was predicted to yield
better procedural skill than the SS. In addition, the MM-subjects were
expected to end up with higher motivation regarding word processing than
SS-subjects because the MM is designed to meet the users' learning styles,
learning preferences and informational needs better. Effects of computer
experience are studied in an exploratory fashion.

3.2 The minimalist approach to tutorial documentation

Over time, Carroll and others have accorded slightly different
characteristics to the MM. But, in general, a MM is based on the following
minimalist principles: (a) task orientation, (b) text optimization, (c) support
of error-recovery, and (d) modularity (Carroll, 1990b; Hallgren, 1992; Horn,
1992; Lazonder & Van der Meij, 1992; Van der Meij, 1992).
 The task-oriented nature of the MM means that the manual focuses on
the basic functions of the program. Thus, the MM allows users to get started
fast and hardly supports any secondary actions (e.g., installation, advanced
tasks) or details concepts (e.g., what menus do). In our MM for a word
processor, the chapters therefore deal with tasks that users are familiar with,
such as typing an invitation, changing the lay-out of a letter to a telephone
company and revising the minutes of a member's meeting. The task-oriented
nature of the MM also transpires in the headings. Chapter headings denote
overall goals users may want to attain (e.g., "Rearranging text", "Changing
characters, words and lines") and section headings refer to subgoals (e.g.,
"Copying text", "Changing the fontsize"). As in the original MM, 'Do it
yourself' sections were included to stimulate users to discover new goals
that the program could satisfy.
 There are two basic rules behind the principle of text optimization.
Firstly, there should be as little text as possible. Like the original, our MM
lacks a preface, advance organizers, an index, and summaries at the end of
each chapter. There is also little conceptual information in the manual,
nearly all information refers to 'doing things'. Not even all procedures are
fully specified. For example, some information that users can find on the

THE MINIMAL MANUAL: IS LESS REALLY MORE?

45

screen, or that they can easily infer, was left out intentionally (e.g., "Look at
the screen. WordPerfect explains how you actually remove these lines.").
This was done to force users into discovering parts of the program by
studying the screen, inferencing and reflecting.
 Secondly, the text should be simple and without jargon where possible.
For this reason, the text was presented in short sentences of about 14 words,
in a subject-predicate order. Embedded sentences, like this one, were not
used. In addition, most of the jargon and technical expressions were
substituted by more common terms. Some potentially confusing words
were, however, not removed because they belong to the word processor's
menu choices or system messages (e.g., intermittent use of the words
'document' and 'file'), or because they belong to the basic computer lingo (in
English) that any user should get to know (e.g., 'printer', 'diskette' or
'cursor').
 Learning how to use a complex program such as a word processor
inevitably causes users to make mistakes. Our MM therefore contains ample
information to recover errors. General exits out of the program and general
recovery strategies in the program are introduced early. Namely, in the first
chapter and they reappear later on where appropriate. In subsequent
chapters specific recovery information is presented (e.g., "If you have made
the wrong choice, press the F1 key again to return to the menu."). To prevent
users from making mistakes in the first place, the manual frequently directs
their attention to the screen to check whether they are still on the right track.
Illustrations were used to clarify operations on the hardware (e.g., turning
the power on, inserting a diskette) and to help users identify special keys
(e.g., F1, BACKSPACE) the first time they were to be used.
 There is not a complete modularity of all of the chapters in our MM. The
first chapter deals with starting and ending the program and is therefore
basic to the rest. The remaining chapters can be worked through
independently from one another, however, and there is no cross-referencing.
Each chapter is thus self-contained, which is exemplified in the numbering
of the pages. Each chapter starts afresh with page 1, and the page number is
preceded by the chapter number (e.g., instead of page 18, users see page 3.2,
meaning the second page of Chapter three).
 The MM was developed for WordPerfect 5.1 and it copied Carroll's
manual as much as possible (for a detailed description of this construction,
see Van der Meij & Lazonder, 1992). The manual is not just a replica
because of variations in hardware (IBM vs. Sirex), software (Display Writer
vs. WordPerfect 5.1) and language (English vs. Dutch).
 Every effort was made to make the MM different from the SS only with
regard to the minimalist principles. Thus, both manuals covered exactly the

 CHAPTER 4

46

same basic tasks (see Appendix 1), and the same command names and
approach to the program (menu-oriented rather than by using the function
keys of WordPerfect). Moreover, the lay-out was identical. The SS was
adapted from a sample of currently used WordPerfect manuals. These
manuals start from the belief that the presence of declarative information is
a necessary condition for the development of a skill (e.g., Anderson, 1985).
In addition to the procedural information that it shared with the MM, the SS
therefore gave ample conceptual information. Thus, the SS contained
regular sections such as a welcome word, an introduction, an index, and
summaries. Moreover, explanations accompanied most of the procedures
(i.e., the manual explains what happens 'inside the computer' when a
command is executed). All procedures to attain a certain goal were
explicated as opposed to the occasional inferencing in the MM. The SS also
explained jargon and technical terms in detail, many of which were
introduced before the users had turned the computer on. Like most
traditional self-study manuals, the SS gave little error-information and there
were no 'Do it yourself' sections that invited users to explore additional
options of the program. As a result, the SS was almost twice as thick as the
MM and it had three times as many words as the MM. Illustrative pages of
both manuals are shown in Appendix 2 and 3.

3.3 Method

3.3.1 SUBJECTS

Sixty-four first-year Dutch university students participated in this study.
There were 15 males and 49 females with a mean age of 19.1 (SD=2.2). The
subjects received course credits for participation. They were classified as
novice, beginner or intermediate user (Brockmann, 1990; Chin, 1986) and
randomly assigned to one of the two experimental conditions (MM or SS).
The allocation of subjects to conditions is shown in Table 3.1.
 Subjects were considered novices when they had less than fifty hours
experience with computers and no background with word processors.
Beginners had either less than fifty hours experience with computers and
experience with word processors, or had more than fifty hours computer
experience, but no experience in working with WordPerfect. Intermediate
users had some experience with WordPerfect.
 The drop-out rate was low. Only one (SS) subject did not attend the
second session. Due to a computer break-down, there were incomplete data
for seven subjects during the learning phase (2 MM; 5 SS) and for five
subjects during the test (2 MM; 3 SS). The data for these subjects were

THE MINIMAL MANUAL: IS LESS REALLY MORE?

47

 Table 3.1
Number of subjects per condition

 Condition
 MMa SSb Row total
User
Novice
Beginner
Intermediate

13
7
10

18
7
9

31
14
19

Column total 30 34 64
a Minimal manual b Self-study manual

excluded on an analysis-by-analysis basis, causing variable group sizes in
some of the analyses.
 Experimental checks on the random allocation to conditions revealed no
significant differences between the groups for intelligence, educational
background, sex, initial motivation or typing skill. As Table 3.1 shows,
computer experience was evenly distributed between experimental groups.

3.3.2 MATERIALS

Experimental setting and word processor
All sessions took place in a computer class equipped with a network of 19
Sirex 386-SX personal computers and a laser printer. The word processor
(WordPerfect 5.1) was downloaded from a network, thereby assuring an
identical setup for all subjects. Given the fact of relatively inexperienced
users, WordPerfect's menu (instead of its infamous function keys) was used
to execute commands (see Cuff, 1980).
 During the hands-on part of the training sessions and during the test
phase, a registration program stored the subjects' actions in a logfile. Every
time a subject struck a key, time and keypress were recorded.

Instructional materials
During training, all subjects received a manual (MM or SS) and a diskette
containing all documents to be used in training. Both manuals were
developed iteratively. A concept version of each manual was reviewed by
three experts (an instructional technologist, a technical writer with detailed
knowledge of the software and a graphical designer). In addition, pilot tests
were run with a number of novice students. On the basis of these findings,
both manuals were revised.

 CHAPTER 4

48

Questionnaires and test
The participants filled in a background questionnaire, containing questions
about sex, age, previous schooling, native language, typing skill and prior
experience with computers. Intelligence was assessed with a standardized
Dutch verbal analogies test (DAT'83; Evers & Lucassen, 1983). Motivation
was assessed by two questionnaires. One questionnaire determined the
subjects' initial motivation; another measured their motivation after training.
Both questionnaires consisted of 45 behavioral descriptions (fillers
included) that were drawn from existing instruments (Lemos, 1978;
Popovich, Hyde, Zakrajsek & Blumer, 1987; Reece & Gable, 1982; Temple
& Lips, 1989). The subjects judged each description (positively and
negatively stated) on a 5 point agree-disagree scale. (See Appendix 4 for the
relevant items and their reliability coefficients (Cronbach's alpha)).
 A performance test was administered to assess learning outcomes. This
test included basic-managerial, retention and transfer items. The six basic-
managerial items addressed tasks like document retrieval and file saving.
Since these tasks were practiced more frequently than the other tasks in the
MM (or in the SS), they were analyzed as a distinct category. The nine
retention items dealt with simple word processing tasks rehearsed during
practice (e.g., copying and moving text, restyling words, paragraphs and
pages). Four transfer items addressed topics that went beyond the scope of
the manuals (e.g., changing the position of the page number, altering a
footnote). Task documents were offered on a separate diskette.

3.3.3 PROCEDURE

The experiment was run in five groups of 7 to 16 subjects. All subjects
attended two sessions of four hours each. The time between sessions was
one week exactly for each group. In all, the experiment took two weeks. All
procedures were identical for the various groups and the same two ex-
perimenters conducted all sessions. Subjects in the same session were given
the same manual.
 At the start of the first session, subjects received the paper and pencil
tests, a manual and a diskette and were seated at their computer. After a
brief introduction, they filled in the background and initial motivation
questionnaire. Subsequently, they were given exactly twenty minutes to
complete the verbal analogies test.
 After the tests, more detailed instructions for working with WordPerfect
were provided. As in the original experiment, subjects were instructed to
work individually, in their own way and at their own pace. They were to
consult the experimenter only when a mechanical error had occurred, or

THE MINIMAL MANUAL: IS LESS REALLY MORE?

49

when they were stuck for more than 15 minutes. The students were asked
not to use WordPerfect between sessions.
 The second session started with another 2.5 hours of hands-on
experience during which all participants managed to complete their training.
After a short breaks, all subjects filled in the final motivation questionnaire.
Next, they were given sixty minutes for the performance test. During the
test the subjects were allowed to consult their manual.

Coding and scoring
The coding resembled that of the original study as much as possible. Depen-
dent variables were: time to complete training, time to complete the perfor-
mance test, number of errors in the test, recoveries from errors in the test,
quality of test performance, and motivation. These measures were
calculated for completed tasks only.
 As in Carroll et al.'s (1987) original study, these data also led to the
following performance measures: (a) performance success; (b) performance
efficiency; (c) recovery effectiveness; and (d) recovery efficiency. Perfor-
mance success was defined as the number of successfully completed items,
which was assessed by examining the task documents stored on diskette and
the logfiles of each subject. Performance efficiency was the ratio of the
relative number of successfully completed items to the time to complete
these items. Error corrections and recovery time were combined into a
measure of recovery efficiency: the number of successful recoveries divided
by the total recovery time for a given item. Effectiveness of recovery was
defined as the number of correct revisions divided by the total number of
revisions for a given item (for further details, see Carroll et al. 1987).
 The initial motivation questionnaire measured five constructs: (a)
curiosity; (b) relevance; (c) confidence; (d) reference group; and (e) persis-
tence. The final motivation questionnaire measured (a) attention, (b)
relevance, (c) confidence and (d) satisfaction (Keller, 1987). Both question-
naires employed a 5-point Likert-type scale with options bearing simple
weights of 5, 4, 3, 2, or 1 for positive items, and the reverse for negative
items. Scores on all items were added for each subject and compared
between groups. High scores represent a high motivation; low scores
indicate a low motivation.

Data analyses
The study was set up as a quasi-experimental design with manual type and
computer experience as the two main factors. Manual has two levels (MM
and SS). Experience has three levels (novice, beginner, intermediate),
leading to a 2 x 3 design.

 CHAPTER 4

50

Table 3.2
Mean time to reach getting-started benchmarks

 Complete
training

Start system Start WP Print

Manual
MMa
SSb

144.5 (38.7)
195.0 (45.6)

2.7 (2.0)
9.2 (4.5)

1.3 (0.9)
2.1 (1.9)

29.9 (10.1)
82.7 (70.9)

Note. Time in minutes, Standard deviations in parentheses.
a
 Minimal manual

b
 Self-study manual

 All data were analysed by means of analyses of variance. Where ap-
propriate, multivariate MANOVA analyses preceded univariate ANOVA
and post-hoc Scheffé analyses (alpha was set at .05). All outcomes were
corrected for initial motivation by inserting the five initial motivation scores
into the analyses as covariates. As no interactions were found between
manual type and computer experience, these data will not be reported.

3.4 Results

3.4.1 TIME

Table 3.2 presents the mean time (in minutes) subjects required to complete
training. Overall, MM-subjects needed over 25% less time to learn to use
the word processor. This difference was statistically significant
(F(1,46)=16.46, p<.01).
 Computer experience had no effect on overall learning time
(F(3,46)=1.85). Novices, beginners and intermediate users all needed about
the same time to complete training.
 One of the design objectives of the MM is to allow users to get started
fast. Table 3.2 lists the mean time it took subjects to reach some getting-
started benchmark tasks. MM-users did indeed get to these tasks sooner than
SS-users (F(3,43)=20.96, p<.01). As the table shows, they started the
system about 6 minutes earlier (F(1,45)=45.19, p<.01) and were faster with
printing their first document (F(1,45)=12.45, p<.01). There was no effect of
computer experience on these benchmark tasks.
 The mean time subjects required to complete the various test items is
shown in Table 3.3. Manual again produced an effect. MM-subjects
required significantly less time to complete basic-managerial items
(F(1,48)=8.46, p<.01) and retention items (F(1,48)=5.37, p<.05). No effect
of manual was found for transfer items (F(1,38)=.43).

THE MINIMAL MANUAL: IS LESS REALLY MORE?

51

Table 3.3
Mean solution time on test items

 Item type
 Basic Retention Transfer
Manual
MMa
SSb

0.5 (0.3)
1.1 (0.9)

3.0 (1.0)
4.0 (2.1)

7.7 (4.2)
6.5 (3.4)

Computer experience
Novice
Beginner
Intermediate

0.9 (0.8)
0.6 (0.5)
0.7 (0.5)

4.2 (2.0)
2.8 (1.1)
2.7 (0.7)

7.7 (4.8)
6.3 (3.4)
7.1 (2.9)

Note. Time in minutes, Standard deviations in parentheses.
Since not all subjects completed the performance test (10 subjects did not get to the transfer items), the
ratio of time to the number of complete items was compared between experimental groups. Given the
fact of speed-test, 'faster' automatically implies 'having completed more items'.
a
 Minimal manual

b
 Self-study manual

 Computer experience affected the time to complete retention items
(F(2,48)=4.78, p<.05). Post-hoc Scheffé analyses indicated that novice users
needed significantly more time to complete retention items than beginners
or intermediates.

3.4.2 ERRORS AND RECOVERIES

With errors, the ratio of errors to the number of items completed was
compared for basic-managerial, retention, and transfer tasks. Descriptive
statistics are presented in Table 3.4.
 There was a significant multivariate effect of manual (F(3,39)=5.19,
p<.01). Overall, MM-users made fewer errors, but a significant univariate
effect was found only for basic-managerial items (F(1,41)=10.56, p<.01).
Computer experience did not affect the number of errors (F(6,76)=1.77).
 Because the MM aims to support the detection and correction of errors,
MM-users were expected to correct more errors. Table 3.5 shows the per-
centage of corrected errors per item type, as a function of manual type and
computer experience. As the mean scores indicate, there was no overall
effect of manual. Whereas MM-subjects did make more successful
recoveries on basic-managerial items, this difference was not significant
(F(1,31)=2.97, p<.10) due to the extreme high variability of scores.

 CHAPTER 4

52

Table 3.4
Mean number of errors on test items

 Item type
 Basic Retention Transfer
Manual
MMa
SSb

0.13 (0.24)
0.32 (0.17)

0.55 (0.24)
0.55 (0.24)

5.82 (6.37)
6.65 (6.07)

Note. Standard deviations in parentheses.
a
 Minimal manual

b
 Self-study manual

 There was a significant effect of computer experience on recoveries on
transfer items (F(2,39)=4.65, p<.05). Scheffé analyses revealed that more
experienced users were significantly more successful in recovering from
errors on transfer items than novices.

3.4.3 QUALITY OF PERFORMANCE

As in the original experiment, this study assessed the effect of the main
factors on performance success, performance efficiency, recovery effec-
tiveness and recovery efficiency.
 Table 3.6 shows the mean performance success scores. Overall, MM-
subjects successfully completed a significant 9% more items than did SS-

Table 3.5
Percentage of successful recoveries on test items

 Item type
 Basic Retention Transfer
Manual
MMa
SSb

80.5 (33.2)
50.5 (42.6)

45.3 (38.8)
37.2 (36.4)

18.8 (21.9)
15.7 (25.8)

Computer experience
Novice
Beginner
Intermediate

54.2 (39.5)
75.0 (41.8)
59.1 (49.1)

41.1 (46.5)
42.6 (24.3)
39.4 (26.3)

 7.7 (8.4)
29.3 (32.9)
21.5 (24.6)

Note. Standard deviations in parentheses.
a
 Minimal manual

b
 Self-study manual

THE MINIMAL MANUAL: IS LESS REALLY MORE?

53

Table 3.6
Mean performance success scores

 Item type
 Basic Retention Transfer
Manual
MMa
SSb

5.7 (0.5)
4.6 (1.4)

5.3 (1.4)
5.1 (2.0)

1.3 (0.8)
1.0 (1.2)

Computer experience
Novice
Beginner
Intermediate

4.7 (1.4)
5.6 (0.7)
5.3 (1.2)

4.4 (1.6)
5.9 (1.7)
5.9 (1.5)

0.7 (0.7)
2.0 (1.1)
1.4 (1.0)

Note. Standard deviations in parentheses.
Performance success = number of items successfully completed.
a
 Minimal manual

b
 Self-study manual

subjects (F(3,48)=4.23, p<.05). Manual type had a significant univariate
effect only on performance success on basic-managerial items
(F(1,50)=11.55, p<.01). For retention and transfer items the difference
between MM-subjects and SS-subjects was not significant.
 Computer experience also significantly affected these scores
(F(6,94)=3.94, p<.01). There were univariate effects on performance
success on retention and transfer items (F(2,50)=5.58, p<.01 and
F(2,50)=10.14, p<.01 respectively). Scheffé analyses showed that novice
users were less successful on these items than beginners or intermediates
(see Table 3.6).
 Table 3.7 shows the performance efficiency data. Manual had a
significant multivariate effect (F(3,36)=5.57, p<.01). In general, the
performance of MM-users was more efficient than that of SS-users. Manual
type had a significant univariate effect on performance efficiency only on
basic-managerial items (F(1,38)=11.71, p<.01). Contrary to expectations,
SS-subjects showed a higher performance efficiency score on retention and
transfer items. This difference was not significant, however.
 Computer experience also significantly affected performance efficiency
(F(6,74)=3.28, p<.01). A univariate effect on retention items was found
(F(2,38)=7.32, p<.01). Scheffé analyses again showed that novice users
were less efficient than beginners or intermediates.
 Table 3.8 presents the main findings for the effectiveness and efficiency
of recovery. Recovery-effectiveness differed in favor of the MM-group on
all three item-types, but a statistically significant outcome was found only

 CHAPTER 4

54

Table 3.7
Mean performance efficiency scores

 Item type
 Basic Retention Transfer
Manual
MMa
SSb

40.0 (16.6)
25.2 (16.0)

2.6 (0.9)
3.0 (1.5)

2.7 (1.9)
3.8 (4.6)

Computer experience
Novice
Beginner
Intermediate

30.6 (13.3)
39.9 (22.8)
31.5 (18.3)

2.1 (0.7)
3.2 (1.6)
3.3 (0.9)

2.4 (2.0)
4.1 (4.2)
3.5 (4.2)

Note. Standard deviations in parentheses.
Performance efficiency = % of items successfully completed per time (min.) � 100.
a
 Minimal manual

b
 Self-study manual

for basic-managerial items (t(35)=2.62, p<.05). A similar finding was
obtained for recovery-efficiency for these items (F(1,30)=4.32, p<.05).
 Experience with computers had no effect on these measures.

Table 3.8
Efficiency and effectiveness of error-recovery

 Item type
 Basic Retention Transfer
Efficiency
 Manual
 MMa
 SSb

334.9 (380.9)
126.2 (169.3)

48.5 (50.7)
41.1 (44.4)

31.4 (47.6)
72.4 (164.7)

Effectiveness
 Manual
 MMa
 SSb

100.0 (0.0)
 80.5 (38.2)

96.2 (10.4)
85.0 (25.9)

93.7 (22.7)
85.0 (35.1)

Note. Standard deviations in parentheses.
Recovery efficiency = number of recoveries per time (min.) � 100; recovery effectiveness = number of
successful recoveries to the total number of attempted recoveries � 100.
a Minimal manual

b
 Self-study manual

THE MINIMAL MANUAL: IS LESS REALLY MORE?

55

3.4.4 MOTIVATION

Two of the subjects initial motivation scores affected the outcomes.
Curiosity had a significant effect on the time to print a document (t(45)=-
2.29, p<.05). As one might expect, time and curiosity were negatively
related. Curious subjects printed their document earlier. In addition,
persistence significantly affected the time subjects needed to complete
basic-managerial items (F(1,48)=4.43, p<.05). More persistent subjects
were faster in completing these items. Persistence also significantly affected
the outcomes (F(1,39)=4.28, p<.05). High persistent subjects made more
successful recoveries from errors on transfer items.
 The MM is designed to meet users' learning preferences as much as
possible. Therefore, it was expected that the MM would increase the sub-
jects' motivation more than the SS would.
 Comparison between the subjects' final motivation scores (i.e., a
between-subjects effect) were made with Mann-Whitney U-tests. These
tests showed no effect whatsoever of manual on any of the four motivational
constructs. Apparently, MM-users came out of their training as motivated as
did SS-users.
 Computer experience did, however, affect the users' confidence and
relevance scores after training. Surprisingly, the novices ended with a
higher self-confidence than beginners (U(42)=101.0, p<.05) or
intermediates (U(46)=127.0, p<.01). Novices and beginners ended with
lower scores for relevance than intermediates (U(48)=95.5, p<.01 and
U(30)=46.5, p<.01 respectively).

3.5 Conclusions

The main objective of this study was to find additional evidence in favor of
the minimalist approach to computer documentation. As in Carroll's ex-
periment, the MM was hypothesized to lead to superior procedural skill than
the SS. MM-users were further expected to increase their motivation (e.g.,
confidence, satisfaction) more than control subjects. Effects of computer
experience were studied in an exploratory fashion.
 The first hypothesis is clearly supported by the results. The MM-subjects
were superior to the SS-subjects during practice and on the performance
test. The MM helped users to get started faster and MM-users needed less
time to complete the training. MM-users also had higher performance
scores: they completed more test items successfully and required less time
to do so than SS-users. Moreover, MM-users made fewer errors and
successfully recovered errors more frequently. No conclusions can be drawn

 CHAPTER 4

56

with regard to the performance on the transfer items since ten SS-subjects
did not process these items (as in the original experiment of Carroll et al.,
1987).
 Our findings thus confirm all of the results of Carroll et al. (1987),
supporting the strengths of the minimalist approach. In addition, they also
justify the conclusion that our 'translation' of Carroll's minimalist principles
into more detailed design oriented guidelines (see also Van der Meij, 1992;
Van der Meij & Lazonder, 1992) lead to the construction of a 'true' MM.
 Surprisingly, the results do not support the second hypothesis. The MM
did not increase the subjects' motivation more than the SS did. This may
have to do with the overwhelming nature of the subjects' first experience
with a word processor. To novice users, WordPerfect may seem a wonderful
tool for creating, editing and formatting text. Casual observations during the
experiment support this stance: subjects were thrilled by the (graphical)
options of WordPerfect and by their laser-printed texts. Another explanation
is that MM-users liked some, but not all, minimalist design characteristics.
For example, they may think positively of the error-information, but, at the
same time, dislike the 'learning by doing' approach prompted in the 'Do it
yourself' sections.
 The most important finding with regard to computer experience is that it
did not interact with manual type. Apparently, the MM has a similar
positive effect on novices, beginners and intermediates. In view of the
general increase of computer experience, this is an important additional sign
of the strength of the minimalist approach.
 Computer experience did affect the speed and quality with which the
subjects learned to use the word processor. For example, novices needed
significantly more time, and they were less successful and less efficient for
retention items than beginners or intermediates. In addition, they were less
capable of recovering from errors and had lower efficiency scores for
transfer items.
 Somewhat surprisingly, the novices showed the highest gains in self-
confidence. This speaks favorably of the quality of the program and the two
manuals, but it is unclear why this is so. Do the novices not yet see the more
complex problems that lie ahead? Likewise, it is unclear why intermediates
had significantly higher relevance gains than novices or beginners.

3.6 Discussion

Whereas this study confirms the functionality of the minimalist approach,
little is yet known about how the minimalist principles work. Future

THE MINIMAL MANUAL: IS LESS REALLY MORE?

57

research should therefore aim to study minimalism in depth and in breadth.

3.6.1 IN-DEPTH EXPANSIONS

With two exceptions, research has concentrated on how all minimalist
principles affect performance. Gong and Elkerton (1990) studied the effect
of including error-information in two types of manuals (a MM and a SS).
They found that the error-information helped to prevent errors. In addition,
it speeded up the time subjects needed to complete the transfer tasks. Black,
Carroll and McGuigan (1987) compared four manuals to examine, among
others, the effect of adequate verbiage. They found that the amount of
written material correlated positively to learning time and test time.
Subjects who had less to read completed their training and test faster. Both
studies thus showed facilitative effects of a single minimalist principle. In
future, such work should be continued in order to increase our
understanding of the operation of distinct minimalist principles, and to give
insights into how these principles help people learn from (minimalist)
documentation. Knowing how people use a manual (and how they learn
from that) is fundamental to knowing how manuals may meet users' learning
styles and preferences.
 In-depth extensions might also start from a rational perspective. The
minimalist philosophy was originally derived from observations of first-
time computer users. Due to this empirical approach, some relevant user-
characteristics may have been overlooked. By contrasting the minimalist
approach with theories of learning and instruction, principles possibly
omitted by the original observations can be uncovered. For example,
behavioristic learning theories, and the literature on guided discovery
learning and human-computer interaction give insight into how users deal
with errors. This knowledge might point to new directions for designing
error-information.

3.6.2 IN-BREADTH EXPANSIONS

It is important to expand the suitability of the minimalist approach to
different levels of expertise and user groups. Research has traditionally
focused on initial skill learning, the area for which the MM was originally
designed. It is not self-evident that MM-subjects are better equipped to learn
the more advanced word processing procedures than subjects trained with a
conventional manual. Some authors have even argued that such a transfer is
hampered when too much emphasis is put (too early) on the development of

 CHAPTER 4

58

procedural skills (e.g., Jelsma, Van Merriënboer, & Bijlstra, 1990). Would
this be also the case for MM-subjects? Research has yet to address this
important issue.
 The present study shows that computer experience has a significant
effect on learning and test performance. What it does not tell is how this ex-
perience affects the processing of a MM. More experienced users are likely
to activate other (computer) prior knowledge and thus have different
learning needs (Schriver, 1986). Because the MM capitalizes on exploiting
the subjects' prior knowledge and needs, the effects on novice and more ex-
perienced users are bound to differ.
 The MM is not one of the most attractive manuals that we have come
across. Although Carroll and his co-workers have addressed some issues of
lay-out and typography, their attention to it has been minimal. This is
unfortunate because it tends to lead to a separation of content and presen-
tation. By linking the two, other ways to operationalize the minimalist
principles come into view. For example, attempts are being made to
construct a manual that 'slashes the verbiage' by substituting nearly all text
by illustrations. In this, and other ways, the operationalizations of good
design principles are a continuous challenge for research on documentation
in the nineties.

References

Aizu, I., & Amemiya, H. (1985). The cultural implications of manual writing and design.

Proceedings of the 32nd International Technical Communication Conference
(ITCC) (pp. WE 33 - 35). Washington: Society for Technical Communication.

Anderson, J.R. (1985). Cognitive psychology and its implications. San Francisco:
Freeman.

Black, J.B., Carroll, J.M., & McGuigan, S.M. (1987). What kind of minimal manual is
most effective? CHI + GI Proceedings (pp. 159 - 162). New York: AMC.

Brockmann, R.J. (1990). Writing better computer user documentation: From paper to
hypertext (2nd. edition). New York: Wiley.

Carroll, J.M. (1990a). An overview of minimalist instruction. Proceedings of the
Twenty-Third Annual Hawaii International Conference on System Science (pp. 210 -
219). Washington: IEEE.

Carroll, J.M. (1990b). The Nürnberg Funnel: Designing minimalist instruction for
practical computer skill. Cambridge: MIT.

Carroll, J.M., Smith-Kerker, P.L., Ford, J.R., & Mazur-Rimetz, S.A. (1987). The
minimal manual. Human-Computer Interaction, 3, 123 - 153.

Chin, D.N. (1986). User modeling in UC: The Unix consultant. In M. Mantei & P.
Orbeton (Eds.), Human factors in computing systems-III: Proceedings of the CHI'86
conference (pp. 24 - 28). Amsterdam: Elsevier.

THE MINIMAL MANUAL: IS LESS REALLY MORE?

59

Cuff, R.N. (1980). On casual users. International Journal of Man-Machine Studies, 12,
163 - 187.

Evers, A., & Lucassen, W. (1983). Differentiële aanleg testserie (DAT'83): Analogieën
[Differential aptitude tests: analogies]. Lisse: Swets & Zeitlinger.

Foss, D.J., Smith-Kerker, P.L., & Rosson, M.B. (1987). On comprehending a computer
manual: Analysis of variables affecting performance. International Journal of Man-
Machine Studies, 26, 277 - 300.

Frese, M., Albrecht, K., Altmann, A., Lang, J., Von Papstein, P., Peyerl, R., Prümper, J.,
Schulte-Göcking, H., Wankmüller, I., & Wendel, R. (1988). The effect of an active
development of the mental model in the training process: Experimental results in a
word processing system. Behavior and Information Technology, 7, 295 - 304.

Gong, R., & Elkerton, J. (1990). Designing minimal documentation using a GOMS
model: A usability evaluation of an engineering approach. In J. Carrasco Chew & J.
Whiteside (Eds.), Empowering People: CHI'90 Conference Proceedings (pp. 99 -
106). New York: ACM.

Hallgren, C. (1992). The Nürnberg Funnel: A minimal collection. The Journal of
Computer Documentation, 16, 11 - 17.

Horn, R.E. (1992). Commentary on the Nürnberg Funnel. The Journal of Computer
Documentation, 16, 3 - 11.

Jelsma, O., Van Merriënboer, J.J.G., & Bijlstra, J.P. (1990). The ADAPT design model:
Towards instructional control of transfer. Instructional Science, 19, 89 - 120.

Jensen, R.P., & Osguthorpe, R.T. (1985). Better microcomputer manuals: A research-
based approach. Educational Technology, 25(9), 42 - 47.

Keller, J.M. (1983). Motivational design of instruction. In C.M. Reigeluth (Ed.), Instruc-
tional-design theories and models: An overview of their current status (pp. 383 -
434). Hillsdale: Erlbaum.

Keller, J.M. (1987). Development and use of the ARCS model of instructional design.
Journal of Instructional Development, 10 (3), 2 - 10.

Lazonder, A. W., & Van der Meij, H. (1992). Towards an operational definition of the
minimal manual (Tech. Rep. No. IST-MEMO-92-02). Enschede, University of
Twente, Dept. of Instructional Technology.

Lemos, R.S. (1978). Students' attitude towards programming: The effect of structured
walk-throughs. Computers & Education, 2, 301 - 306.

Mackin, J. (1989). Surmounting the barrier between Japanese and English technical
documents. Technical Communication, 36, 346 - 351.

O'Malley, C., Smolensky, P., Bannon, L., Conway, E., Graham, J., Sokolov, J., &
Monty, M.L. (1983). A proposal for user centered system documentation. In A.
Janda (Ed.), Human Factors in Computing Systems: Proceedings of the CHI'83
Conference (pp. 282 - 285). Amsterdam: Elsevier.

Nickerson, R.S. (1991). A minimalist approach to the "paradox of sense making".
Educational Researcher, 20(9), 24 - 26.

Oatley, K., Meldrum, M.C.R., & Draper, S.W. (1989). Evaluating self-instruction by
minimal manual and by video for a feature of a word-processing system. Un-
published manuscript, University of Glasgow.

Olfman, L., & Bostrom, R.P. (1988). The influence of training on use of end-user
software. Proceedings of the Conference on Office Information Systems (pp. 110 -
118). New York: ACM.

 CHAPTER 4

60

Paxton, A.L., & Turner, E.J. (1984). The application of human factors to the needs of
the novice computer user. International Journal of Man-Machine Studies, 20, 137 -
156.

Penrose, J.M., & Seiford, L.M. (1988). Microcomputer users' preferences for software
documentation: An analysis. Journal of Technical Writing and Communication, 18,
355 - 366.

Popovich, P.M., Hyde, K.R., Zakrajsek, T., & Blumer, C. (1987). The development of
the attitude toward computer usage scale. Educational and Psychological
Measurement, 47, 261 - 269.

Raban, A. (1988). Word processing learning techniques and user learning preferences.
SIGCHI Bulletin, 20, 83 - 87.

Ramsay, J.E., & Oatley, K. (1992). Designing minimalist tutorials from scratch. Instruc-
tional Science, 21, 85 - 99.

Redish, J.C. (1988). Reading to learn to do. The Technical Writing Teacher, 15, 223 -
233.

Reece, M.J., & Gable, R.K. (1982). The development and validation of a measure of
general attitudes toward computers. Educational and Psychological Measurement,
42, 913 - 916.

Scharer, L.L. (1983). User training: Less is more. Datamation, 29, 175 - 182.
Schriver, K.A. (1986). Designing computer documentation: a review of the relevant

literature (Tech. Rep. No. 31). Pittsburg: Carnegie-Mellon University, Com-
munications Design Center.

Stevensen, D. (1992). After dinner address at SIGDOC 1991. The Journal of Computer
Documentation, 16(2), 18 - 28.

Temple, L., & Lips, H.M. (1989). Gender differences and similarities in attitudes
towards computers. Computers in Human Behavior, 5, 215 - 226.

Tripp, S.D. (1990). Book review of: The Nürnberg Funnel. Educational Technology
Research and Development, 38(3), 87 - 90.

Vanderlinden, G., Cocklin, T.G., & McKita, M. (1988). Testing and developing
minimalist tutorials: A case history. Proceedings of the 35th International Technical
Communications Conference, 196 - 199.

Van der Meij, H. (1992). A critical assessment of the minimalist approach to documen-
tation. SIGDOC'92 Conference Proceedings, 7 - 17.

Van der Meij, H., & Lazonder, A.W. (1992). A constructivistic approach to computer
documentation. Paper presented at the second EARLI-SIG workconference on
comprehension of verbal and pictorial information, Nijmegen, The Netherlands,
November 2 - 3.

Wendel, R., & Frese, M. (1987). Developing exploratory strategies in training: The
general approach and a specific example for manual use. In H.J. Bullinger, B.
Schackel & K. Kornwachs, Eds. Proceedings of the Second IFIP Conference on
Human-Computer Interaction (pp. 943 - 948). Amsterdam: Elsevier.

61

CHAPTER 4

Toward effective error control in minimalist
documentation8

In learning to use software, people spend at least thirty percent of
their time on dealing with errors. It could therefore be desirable to
exploit users' errors rather than to avoid them. That is, to include
error-information in a manual to support users in dealing with
errors. An experiment was performed to examine the functionality of
such error-information in a manual for a word processor. Two
minimal manuals were compared, one containing error-information
and one from which nearly all the error-information had been
removed. Forty-two subjects were randomly assigned to one of the
two conditions. Subjects who used the manual with error-
information were expected to become more proficient at using the
word processor (i.e., better constructive and corrective skills) and to
develop more self-confidence. The results were equivocal. On some
aspects of skill the error-information led to better performance (i.e.,
correcting syntactic errors). On others it had an adverse effect (i.e.,
detection of semantic errors and overall error correction time).
Explanations are advanced for these findings and topics for further
research are identified.

4.1 Introduction

One of the most striking features of first-time computer users is that they are
active learners. They want to 'do' things in order to reach personal goals, rather
than read through endless pages of what they consider to be 'just information'
(Carroll, 1990b; Redish, 1988; Scharer, 1983; Wendel & Frese, 1987).
Unfortunately, the instructional strategy of most computer manuals does not suit
this spontaneous learning strategy. Most manuals require users to proceed step-
by-step through endless series of contrived drill and practice exercises, giving
them (too) little freedom for active (i.e., self-initiated) learning.

8Lazonder, A.W., & Van der Meij, H. (1994). Effect of error-information in tutorial
documentation. Interacting with Computers, 6, 23 - 40. (with minor modifications).

 CHAPTER 4

62

 The main reason for this is that trainees get themselves in trouble when they
explore (Njoo & De Jong, 1993). Although these explorations can be
advantageous in learning computer-related tasks (e.g., Kamouri, Kamouri &
Smith, 1986; Van Joolingen, 1993), this view is not generally accepted.
Consequently, detailed step-by-step instruction is supposed to prevent users from
making mistakes. This assumption is unrealistic, however. Research (e.g., Carroll
& Mack, 1984; Mack, Lewis & Carroll, 1987; Redish, 1988) has consistently
shown that new users have problems following the descriptions that manuals
provide. Frequently, they consider these directions paradoxical or irrelevant to
their goals. As a consequence, novice users tend to explore the system on their
own. As many as 65 percent of the users may skip information they consider
irrelevant and use the manual only when they need help (Penrose & Seiford,
1988).
 When novice users 'jump the gun', problems can and will arise. Just as in step-
by-step instruction, mistakes occur during exploratory behavior. That is, the user
may be blocked from any further exploratory actions. Research has consistently
indicated that new users spend 30 to 50 percent of their time on detection and
correction of errors (Bailey, 1983; Card, Moran & Newell, 1983; Graesser &
Murray, 1990).

4.2 Errors and learning

In conventional manuals, errors are seen as 'blocks' to learning that can be
avoided by detailed step-by-step instruction. This view is in line with classical
theories (e.g., behaviorism) that aim for a minimum number of errors. These
learning theories advocate error minimization because: (a) errors hinder the
control over learning, (b) errors cause frustration, which, in the end, may cause a
learner to stop learning, and (c) errorless learning is richer in association, because
it prompts and explicitly relates new knowledge to existing knowledge (Glaser,
1965; see also Glaser & Bassok, 1989).
 A contrasting, and more fruitful approach in view of the above, is to perceive
errors as a wonderful opportunity for learning (e.g., Brown, Burton & deKleer,
1982; Carroll, 1990a; Singer, 1978). There are two reasons why for this. Firstly,
the nature of the learning experiences should reflect the intended training
outcomes as much as possible. Learning to operate a computer program means
developing constructive and corrective skills. Users must learn not only how to
do things, but also how to undo things that go wrong. That is, they should also
learn how to deal with errors. Training should therefore focus on the
development of both these procedural skills (Wendel & Frese, 1987). Secondly,
errors signal misconceptions in the users' conceptual model (Brown et al., 1982;

 63 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

Pickthorne, 1983; Stevens, Collins & Goldin, 1982). Errors may thus help users
to reveal and remove these misconceptions, and, consequently, develop a better
conceptual model.
 Errors will only have a positive effect if they are controlled in the learning
process. That is, when the instruction supports the user's corrective skills
development. This chapter investigates how such error control can be brought
about. It first outlines the stages involved in dealing with an error. From this
model, demands for effective error control are identified. The second part of this
paper reports an experiment that tests whether a manual that meets these
demands assists first-time users in developing word processing skills.

4.3 A general model of error-recovery

The main goal of users who have made an error is to return to a normal, or at
least acceptable system state (Johannsen, 1988). In achieving this goal, users tend
to go through three stages: (a) detection, (b) diagnosis, and (c) correction
(Brown, 1983; Curry, 1981; Jelsma & Bijlstra, 1990; Wærn, 1991). The main
assumption behind these stages is that all user-activity is goal-directed (cf.
Ashcraft, 1989; Card et al., 1983; Norman, 1986; Stillings et al., 1987). A
detailed outline of these stages is presented in the model below.

4.3.1 DETECTION

Error detection is the first step in recovery. It is conditional to the other stages: an
error that is not detected can never be corrected.
 An error is detected when a user considers an outcome to contrast with his or
her original goal. More specifically, there are two ways in which error detection
may be triggered (Allwood, 1984). Firstly, triggering may come in response to
some external cue. For example, a user perceives a discrepancy between an
outcome and some definitive yardstick of correctness (Guthrie, Bennett &
Weber, 1991; Lewis, 1981). Secondly, detection can be prompted internally. That
is, it can be initiated by the user on his or her own accord (Lewis, 1981). The
user may, for example, feel insecure with the selected method, the command(s),
or its execution.
 Triggering is not a sufficient condition for detection. The user may, for
example, abandon the pursuit of an error that is not important and does not
interfere with task execution. Moreover, triggering does not always occur at the
right moment. Misconceptions about the expected outcome, or the
appropriateness of a solution method may lead to undetected errors or to a delay

 CHAPTER 4

64

in the detection of an error. On the other hand, triggering can also occur if no
error has been made. In that case, correct performance is judged as erroneous.
 So, in addition to triggering, the user has to spot the error on the screen to
actually detect it. Locating an error occurs by evaluating, or reviewing the current
system state and the actions that were performed.

4.3.2 DIAGNOSIS

After detection, the nature of the error is still only vaguely known. The user
merely knows that something has gone wrong. In diagnosis, the two main
activities are finding out the exact nature of the error and its possible cause.
 First, the error must be identified to understand its exact nature. That is, the
system's error-state must be compared with the user's original goal. By
comparison the discrepancy between the observed and the desired output
becomes clear. Second, the user is likely to reason about what may have caused
the error (McCoy Carver & Klahr, 1986). Especially in the case of a more
fundamental mistake, the user will wonder about the solution method that was
applied.
 Whereas the diagnosis of the nature of an error is conditional to correction,
the diagnosis of its cause is not always needed for correction (Rasmussen, 1986).
However, it does help users to construct a better conceptual model.

4.3.3 CORRECTION

Correction contains four different kinds of user activity. The user must first select
a (repair) goal. As the difference between where the user is now and where he or
she wants to be is known, the goal is obvious. The gap between the actual and the
desired output (i.e., the user's original goal) must be bridged. This is often done
by sub-goal decomposition (e.g., Anderson, 1985; Frederiksen, 1984; Newell &
Simon, 1972). For example, the user may divide the overall goal 'correct a typo'
into three subgoals: move the cursor, delete the incorrect text, and type the
correct text.
 Next, the user must plan the method, for there may be more than one method
of achieving the repair goal. To select the most appropriate method, the users
decides which selection rules apply (Card et al., 1983). Each of these rules has
the form of an if-then statement. In the above example, one of the selection rules
for cursor movements might be: 'if the document contains 1 page, then use the
arrow-keys to move the cursor; if the document contains 2 pages or more, then
use the search-command'.
 The method is then translated into a physical action-sequence. The user

 65 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

selects the commands that will be used and determines the order in which they
will be executed. The last action in the model is the execution of the commands.
Execution is the first physical action in this model.

Errors may be given different statuses. Some errors will be easier to detect and/or
correct than others. For that reason, errors are classified into one of the following
categories: (a) semantic; (b) syntactic; and (c) slip (cf. Douglas & Moran, 1984;
Lewis & Norman, 1986). A semantic error occurs when an inadequate command
is chosen to achieve a given goal. For example, the user may select 'Base Font' to
try to set a word in italics. Carrying out a correct command improperly is termed
a syntactic error (e.g., changing the line spacing into 1½ instead of 1.5). Slips are
small mistakes at the keystroke level (e.g., typing errors). In general, there is no
research on how to deal with these three types of error in computer
documentation. Therefore, this study will only explore any differential effects.

4.4 Toward effective error control

To bring about effective error control, a manual should support users in dealing
with errors. Such control is possible by including error-information in the
manual. In keeping with the staged error-recovery model, good error-information
should consist of (a) a characterization of the system-state for detecting and
identifying the error, (b) conceptual information about the likely cause of the
error, and (c) action statements for correcting the error (Lang, Lang & Auld,
1981; Mizokawa & Levin, 1988; Roush, 1992). A typical example of error-
information might thus read:

If the code [Hrt] appears, you pressed the RETURN key instead of the
F2 key. Remove the [Hrt] code by pressing the BACKSPACE key. Press
the F2 key to start the search as yet.

Special attention should also be given to the appropriate timing of the error-
information in order to reduce the number of delayed detections. Error-
information should be presented frequently, often directly after the commands,
rather than in separate 'trouble shooting' sections (Bailey, 1983;

 CHAPTER 4

66

Retrieving a document

Before you can retrieve a document from disk, you
must always clear the screen first.

1. Go to the menubar and choose the command EXIT
2. Press the ENTER key
3. Answer both questions by typing an N

You have cleared the screen.

If there is still text on the screen, you may have pressed
the wrong key. Press the F7 key and type an N twice to
clear the screen as yet.

Retrieving a new document into the current
document has severe consequences for further task
execution

4. Go to the menubar and choose the command
RETRIEVE

5. Press the ENTER key

If the text Document to be retrieved: does not appear,
you have selected the wrong command. Press the F1
key to rectify your choice.

Error-information is presented directly after the
commands it refers to.

6. Type MANUAL.TXT
7. Press the ENTER key

The document MANUAL.TXT appears on the screen

If the screen remains empty, you have probably made a
typing mistake. Retype the name of the document and
press the ENTER key.

Typing a filename is error-prone to new users. Note
that even with this simple error the detection-
diagnosis-correction format can be applied.

Figure 4.1
Error-information in a manual. The left column shows an example page of the manual
with error-information that was used in the experiment (MM+). The corresponding
principles for effective error control are presented in the right column.

Carroll, 1990b; Horton, 1990; Lewis & Norman, 1986). As a rule of thumb, it is
to be presented when errors have severe consequences for further task execution,
or when commands are prone to error. An example of how error-information
should be incorporated in a manual is shown in Figure 4.1.
 To examine the efficacy of error-information, an experiment was conducted
using a manual with error-information (MM+) and a control manual containing
almost no error-information (MM-). It was expected that subjects who used a
manual with error-information would develop better procedural skill than
subjects who used a manual without error-information. More specifically, the
MM+ subjects were expected to perform better on test items measuring
constructive and corrective skills. Constructive skills are needed to achieve the
user's original goals, whereas corrective skills are necessary to recover errors
(i.e., meet the repair goal).

 67 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

 Error-information provides users with a safety net (Brown, 1983; Carroll &
Mack, 1984; Cuff, 1980). It assures them that, no matter how odd the system's
response may seem, nothing is wrong as long as the described error-state does
not occur and that possible errors can be corrected at all times. MM+ subjects
were therefore expected to become more confident as well.

4.5 Method

4.5.1 SUBJECTS

The experiment was part of an introductory computer course for first-year
students in Instructional Technology. Forty-two students took part in the
experiment, receiving course credits for participation. There were 10 males and
32 females with a mean age of 19.0 (SD=1.34). Subjects were randomly assigned
to one of the two experimental conditions. There were 21 subjects in the MM+
group and 21 in the MM- group. All subjects had some experience with
computers (games and/or applications), but very little or no experience with the
software used in the experiment. Preliminary checks on the random allocation to
conditions revealed no significant difference between the two groups with regard
to age, sex, educational background and initial self-confidence. The mean prior
experience with computers was equal for both groups as well.

4.5.2 MATERIALS

Experimental setting and word processor
All sessions took place in a computer class provided with a network of 19 Sirex
386-SX personal computers. The goal of the course was to teach ele-mentary
word processing skills with the menu-driven version of WordPerfect 5.1.
WordPerfect was downloaded from the network, thereby assuring an identical
setup of the word processor for all subjects.
 A registration program was installed on each computer. It stored the subjects'
actions in a logfile. Every time a key was struck, time and keypress were
recorded.

Instructional materials
Subjects from both groups received a minimal manual (MM+ or MM-) and a
diskette containing all documents to be used in practice. Both manuals were
designed especially for the experiment, varying only with regard to error-
information. In the MM+, all the error-information was designed according to the
criteria for effective error control (see Figure 4.1). The MM- contained no error-

 CHAPTER 4

68

information at all. It introduced the two main function keys for error-recovery in
the first chapter, however. A more detailed description of the MM+ can be found
in Carroll (1990b), Lazonder and Van der Meij (1992, 1993 [chapter 3]) and Van
der Meij (1992).

Questionnaires and tests
A background questionnaire was used to gather some personal data such as age,
sex, educational background, and computer experience.
 Subjects' confidence was assessed by three questionnaires (see Appendix 5).
The first questionnaire determined subjects' initial confidence; the second and
third assessed their confidence after practice and after the tests, respectively.
Each questionnaire contained 20 behavioral descriptions, nine of which were
fillers. The subjects judged each description (e.g., "Working with computers
scares me") on a 5-point agree-disagree scale. Pilot studies revealed satisfactory
reliability scores for the questionnaires (Cronbach's alpha ≥ .90).
 Three tests were administered to assess learning outcomes. One test measured
the subjects' constructive skill. It contained 5 retention tasks (i.e., elementary
word processing skills rehearsed during practice, such as removing text or
changing the line spacing) and 5 transfer tasks (i.e., tasks not covered by the
manuals, such as changing the position of the page number or adjusting the
margins).
 Two tests assessed the subjects' capacities for error-recovery: a knowledge
and a skill test. The corrective knowledge test was a paper-and-pencil test. It
contained three semantic errors, five syntactic errors and one slip. Each item
presented a goal and a screendump, displaying the result of a set of actions to
achieve that goal. For each item, the subjects had to mark all errors. For each
detected error, its diagnosis and correction had to be specified as well. The
corrective skill test was performed on the computer. The subjects had to detect
and correct six errors (4 semantic, 2 syntactic) in a task document. Items of both
tests were further classified into retention (i.e., included in the error-information)
and transfer (i.e., not covered by the error-information). As manual type had no
effect on these retention and transfer scores, these measures will not be reported.

4.5.3 PROCEDURE

The experiment was conducted in 4 groups of 7 to 13 subjects. In each group,
half of the subjects were given a MM+ manual; the other half received a MM-
manual. Separate seatings prevented interactions between MM+ and MM-
subjects in a session. Within two weeks, all subjects attended two sessions of
four hours each. In all, up to four and a half hour (maximally) were available for

 69 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

practice. The remaining time was used to complete the tests. The maximum time
between sessions was 3 days. All procedures were identical for the various
groups and the same two experimenters conducted all sessions.
 At the beginning of the first session, the subjects filled in the background
questionnaire and the initial confidence questionnaire. Next, they received
instructions. The subjects were told to work individually and to consult the
experimenter only when a system error had occurred or when they were stuck for
more than 15 minutes. They were told to work in their own way and at their own
pace. The subjects were asked not to work with WordPerfect between sessions.
Checks indicated that they complied with this request. After the instruction, the
subjects started practise.
 The second session started with another hour of hands-on experience,
enabling all subjects to complete practise. Directly after practise, the subjects
filled in the second confidence questionnaire. After a short break, they were
given the constructive skill test and the corrective skill test using a counter-
balanced administration to control for order effects. After these tests, the subjects
completed the corrective knowledge test. The subjects worked individually on all
tests. They were not allowed to consult their manual or the experimenter. Enough
time was given for all subjects to complete each test. After the tests, subjects
filled in the final confidence questionnaire.

Coding and scoring of the dependent variables
The dependent variables were constructive skill, corrective skill and confidence.
Constructive skill was defined by three measures: test time, success rate and
number of errors. Test time was defined as the time required to complete the
constructive skill test. A difference was made between retention and transfer.
Success was indicated by the number of successfully completed items on the
constructive skill test. This was assessed by examining the task documents stored
on diskette and the log-files produced by each subject. The number of errors was
registered for each item of the constructive skill test.
 There were three measures of error-recovery skill: (a) detection; (b) diagnosis;
and (c) correction, which were scored as follows. Detection was scored on a 2-
point right-wrong scale. The inter-rater reliability for detection was high (Cohen's
Kappa = .94). Diagnosis was scored on the following 4-point ordinal scale: (a)
both cause and effect are incorrect; (b) wrong cause, right effect; (c) right cause,
wrong effect; and (d) both cause and effect are correct. In a similar fashion, the
correction method was scored as one that: (a) obviously does not try to correct
the error; (b) attempts to correct the

 CHAPTER 4

70

Table 4.1
Mean test time scores

Condition
MM+ MM-

Retention
Transfer

10.80 (8.51)
32.31 (21.17)

 9.74 (6.14)
36.29 (19.39)

Totala 50.26 (21.83) 54.54 (18.83)

Note. There were 5 retention and 5 transfer items. Time in minutes, Standard deviations in parentheses.
a As the time between tasks could not be taken into account for these measures, the overall test time is higher
than the time for the distinct item types.

error, but is both semantically and syntactically incorrect or incomplete; (c) is
semantically correct, but contains one or more syntactic errors; and (d) is both
semantically and syntactically correct. Inter-rater reliability scores for diagnosis
and correction were .77 and .93, respectively. For each subject, the time to
complete the corrective skill test was recorded as well.
 The three confidence questionnaires used a 5-point Likert-type scale. Scores
on all items were added for each subject with high scores representing high
confidence. Confidence changes were examined within subjects.

Data analyses
The majority of the data were analyzed by means of (M)ANOVAs using manual
type (MM+ or MM-) as independent variable. Mann-Whitney U tests were
applied to analyze the ordinal data. The (within-subject) confidence changes
were analyzed by Wilcoxon Matched-Pairs Signed Rank tests.
 All outcomes were corrected for subjects' prior experience with computers by
inserting this measure into the analyses as a covariate. Given the relative small
sample size, effects of manual type on users with identical computer experience
were not computed.

4.6 Results

4.6.1 CONSTRUCTIVE SKILL

Time
Table 4.1 shows the mean time (in minutes) subjects required to complete the
constructive skill test. Manual type produced no significant effect on this
measure (F(1,38)=.41). MM+ required as much time for completing the

 71 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

Table 4.2
Mean performance success and performance effciency scores

Condition
MM+ MM-

Performance successa
Retention
Transfer

3.71 (8.51)
1.86 (1.35)

4.00 (0.76)
1.62 (1.02)

Performance efficiencyb
Retention
Transfer

55.01 (39.15)
13.22 (14.05)

51.78 (26.10)
11.99 (11.35)

Note. There were 5 retention and 5 transfer items. Standard deviations in parentheses.
a Number of items successfully completed. b Number of items successfully completed per time (min.)
× 100.

constructive skill test as MM- users. Retention and transfer items were also
analyzed separately. There was no effect of manual type on the time to complete
retention items (F(1,38)=.64) and transfer items (F(1,38)=.39).

Quality of performance
Table 4.2 reports the performance success scores. There was no significant effect
of manual type on performance success (F(1,39)=.09). Overall, MM+ users
produced as many correct solutions as their MM- counterparts. There was also no
difference in performance success on retention items (F(1,39)=1.00) and transfer
items (F(1,39)=.53).
 Time and the number of successfully completed test items were combined
into a measure of performance efficiency. The mean efficiency scores are
presented in Table 4.2. As can be seen from this Table, the mean scores show no
significant difference between the two groups (F(1,36)=.47). Clearly, users from
both experimental groups performed equally efficient. Efficiency scores on
retention and transfer items were slightly higher for MM+ users. However, none
of these differences were significant at the .05 level (F(1,37)=.05, F(1,37)=.06).

Errors
The error-rates of both groups were examined by comparing the mean number of
errors to the number of successfully completed items. Again, a difference
between retention and transfer items was made. The mean error-rates are shown
in Table 4.3.

 CHAPTER 4

72

Table 4.3
Mean number of errors on correctly solved test items

Condition
MM+ MM-

Retention
Transfer

0.48 (0.51)
2.71 (2.86)

0.62 (0.57)
2.62 (3.06)

Note. Scores are the number of errors by the number of successfully completed test items. Standard
deviations in parentheses.

 Manual type had no significant effect on the total number of errors
(F(1,38)=.01), indicating that, overall, subjects in the MM+ group made as many
errors as subjects in the MM- group. As the mean error-rates show, MM+ users
committed as many errors as MM- users on retention and transfer items. Again,
manual type had no effect on the number of errors on retention items
(F(1,38)=.65) and transfer items (F(1,38)=.01).

4.6.2 CORRECTIVE SKILL

There were three measures to assess error-recovery: (a) detection; (b) diagnosis;
and (c) correction.

Detection
The number of detected errors were recorded on the corrective knowledge test
and the corrective skill test. The mean number of detected errors are presented in
Table 4.4.
 As the mean detection scores show, the MM+ users detected more errors on
the corrective knowledge test than MM- users. However, this difference was not
statistically significant: a MANOVA on manual type by the number of detected
semantic errors, syntactic errors and slips showed no multivariate effect
(F(3,37)=.92).
 On the corrective skill test, a t-test on the total number of detected errors by
manual type produced no significant effect (t(40)=-.99). Again, the MM- group
detected as many errors as the MM+ group. Manual type did affect the detection
of semantic errors (t(40)=-2.32, p<.05). But, contrary to expectations, the MM-
users detected more errors than the MM+ users. No effect of manual type on the
number of detected syntactic errors was found (F(1,39)=.06).

 73 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

Table 4.4
Mean number of detected errors

Condition
Error-type

MM+ MM-
Corrective Knowledge Testa
Semantic
Syntactic
Slip

1.86 (0.79)
2.48 (0.98)
0.52 (0.51)

1.48 (1.03)
2.14 (0.91)
0.43 (0.51)

Corrective Skill Testb
Semantic
Syntactic

3.67 (0.66)
1.67 (0.48)

4.00 (0.00)*
1.57 (0.51)

Note. Standard deviations in parentheses.
a Maximum score = 9 b Maximum score = 6
* p<.05

Diagnosis
The mean scores of the quality of the diagnoses are shown in Table 4.5. Overall,
there was no difference in diagnosis scores between the two groups
(U(42)=172.5). Apparently, the quality of the diagnoses of the MM- users was
equal to that of the MM+ group. As the mean ranks in Table 4.5 indicate, the two
groups hardly differed with respect to their diagnoses on the distinct error-types
as well. Manual type had no effect on the diagnoses of semantic errors
(U(42)=199.0), syntactic errors (U(42)=216.5) or slips (U(42)=199.5).

Table 4.5
Mean rank scores of the quality of the diagnosesa

Condition
Error-type

MM+ MM-
Semantic
Syntactic
Slip

20.48
21.69
22.50

22.52
21.31
20.50

Note. Diagnoses were registered on the Corrective Knowledge Test only. n=21 for both conditions.
a Higher rank means higher quality

 CHAPTER 4

74

Table 4.6
Mean rank scores of the quality of correction

Condition
Error-type

MM+ MM-
Corrective Knowledge Testa
Semantic
Syntactic
Slip

20.17
25.00*
22.10

22.83
18.00
20.90

Corrective Skill Testb
Semantic
Syntactic

20.98
21.00

22.02
22.00

Note. n=21 for both conditions.
a Maximum score = 9 b Maximum score = 6
* p<.05

Correction
The mean correction scores of both tests are shown in Table 4.6. On the whole,
the MM+ users were not better at correcting errors on the corrective knowledge
test. Manual type had no significant effect on the total correction score
(U(42)=214.5). As can be seen from Table 4.6, there was an effect of manual on
the correction of syntactic errors (U(42)=147.0, p<.05), indicating that the MM+
users were better at correcting syntactic errors than their MM- counterparts. No
effect was found on correction of semantic errors (U(42)=192.5) and slips
(U(42)=208.0).
 On the corrective skill test, again no difference on the total correction score
was found (U(42)=217.0). Apparently, MM+ users were as good at correcting
errors as MM- users. The mean rank scores indicate that there was no significant
difference between correction scores on semantic errors (U(42)=209.5), and
syntactic errors (U(42)=210.0).
 Table 4.7 presents the mean time (in minutes) subjects required to complete
the corrective skill test. Overall, MM- users completed this test more than 7
minutes faster than MM+ users. This difference was statistically significant
(t(40)=2.37, p<.05). Time and the correction score were combined into a measure
of correction-efficiency (see Table 4.7). Although the MM+ users were expected
to be more efficient with respect to this measure, the opposite turned out to be
true. Manual type had a significant effect on correction-efficiency (U(42)=127.0,
p<.05) indicating that the MM- group corrected errors more efficiently than the
MM+ group.

 75 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

Table 4.7
Mean time and recovey efficiency scores on the Corrective Skill Test

Condition
MM+ MM-

Time
Efficiencya

23.30 (12.40)*
18.20 (9.80)*

16.00 (6.76)
23.80 (7.70)

Note. Time in minutes, Standerd deviations in parentheses.
a Efficiency = mean correction score per time × 100.
* p<.05

4.6.3 CONFIDENCE

Error-information provides users with a safety net. Therefore, MM+ users were
expected to gain more self-confidence than MM- users. The mean differences in
self-confidence are presented in Table 4.8.
 In the MM+ group, confidence scores remained relatively constant. There was
a small increase in confidence after practice, and a small decrease after the tests.
None of these differences were statistically significant. Confidence changes were
similar for MM- users. However, the difference between confidence scores after
practice and after the tests was significant for this group (Z(19)=-2.63, p<.01).
The MM- users' confidence after the tests was lower than after practice.

Table 4.8
Within-subject differences in self-confidence

Condition
MM+ MM-

B — A1
B — A2
A1 — A2

 0.05 (0.56)
-0.09 (0.69)
-0.10 (0.52)

 0.28 (0.67)
 0.03 (0.43)
-0.36 (0.48)*

Note. B = confidence before training; A1 = confidence after training; A2 = confidence after the tests.
Standard deviations in parentheses.
* p<.01

 CHAPTER 4

76

4.7 Discussion

This study examined the effect of error-information on users' procedural skills
and levels of self-confidence. Subjects who used a manual with error-information
were expected to develop better constructive and corrective skill and to gain a
higher level of self-confidence than subjects who used a manual without error-
information. In general, there is no effect of error-information on these measures.
However, some results reveal new and interesting insights into how error-
information might affect user behavior.
 The first hypothesis, which stated that MM+ users would develop better
constructive skill, was not supported by the results. Subjects from both
conditions performed equally well on the constructive skill test. There was no
difference between the two groups regarding the time to complete the test items,
the number of items successfully completed or the number of errors.
 Why didn't the MM+ have a facilitative effect on subjects' constructive skill?
Firstly, subjects' errors on the constructive skill test were not the kind of errors
addressed by the error-information in the manual. Most error-information in the
MM+ deals with syntactic errors. The MM's short chapters and action-oriented
headings explicitly denote when commands have to be used. Information to
recover semantic errors (i.e., the choice of an incorrect command) is therefore
hardly ever presented. Post-hoc analysis of the constructive skill test indicated
that no fewer than 84% of the errors subjects made were semantic errors. Only
15% of the errors were syntactic; 1% were slips. Since subjects' errors were for
the most part not overcome by the error-information, MM+ users were not better
trained to detect and correct most of their own errors. Consequently, MM+ users
were not faster in completing the constructive skill test and produced as many
correct solutions on test items as MM- users.
 Secondly, the functionality of error-information is affected by its actual use.
During practice, subjects can utilize error-information to correct an error or to
explore the effect of a proposed correction method (see Van der Meij, 1992).
This study provides no information as to whether the subjects have consulted the
error-information. Subjects may not have made a given error, or they may not
have explored the correction method.
 The MM+ was further expected to be superior to the MM- for corrective skill.
This hypothesis too was not supported by the results. On the corrective
knowledge test, the MM- users detected as many errors as MM+ users. On the
corrective skill test, the MM- group was faster and detected more semantic
errors. Moreover, the two groups were equally proficient at diagnosing the cause
of an error. With regard to correction, again no pronounced difference between
the groups occurred on the two tests. The MM+ users were better at correcting
syntactic errors on the corrective knowledge test, whereas the MM- users

 77 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

achieved higher correction efficiency scores on the corrective skill test.
 The reason why MM+ users were better at correcting syntactic errors can be
accounted for by the error-information. Since error-information mainly addressed
syntactic errors, MM+ users were better trained in correcting these errors than
MM- users. The fact that the scores on the corrective skill test do not support this
explanation can be ascribed to the correction methods subjects used on this test.
Nearly all subjects used re-constructive methods to correct errors, meaning that
instead of undoing actions, they simply performed those actions again. For
example, to undo an incorrect line spacing, subjects inserted a new line spacing
code instead of removing the old, incorrect code. Although such methods will
often be effective in working with WordPerfect, they are less likely to be applied
on the corrective knowledge test. Consequently, corrective methods were used on
this test, and MM+ users were better trained in using these methods for syntactic
errors. The issue of how subjects correct their errors should be addressed in
future studies.
 There are several reasons why the other expected findings failed to appear.
Firstly, the scores on the corrective skill test point at a ceiling-effect. Although
the data show a significant difference between the two groups with regard to the
detection of semantic errors, their true magnitude cannot be established. For
detection, this ceiling-effect may be caused by system cues or the word
processor's help function. These build-in resources may have biased the number
of errors detected. The results from the corrective skill test can therefore not be
seen as an adequate reflection of the actual number of detections.
 Secondly, although preliminary checks on random allocation of subjects to
conditions indicated that both groups were identical with respect to prior
experience with computers, within-group differences existed. These differences
may have affected the assessment of recovery skill. Because more experienced
users have a richer, more elaborate conceptual model than less experienced users,
their conceptual model allows for a better, more meaningful incorporation of new
information. Consequently, they are assumed to benefit more from error-
information. Future research should therefore focus on how prior experience with
computers affects the development of recovery skill.
 Thirdly, as with constructive skill, the actual use of error-information may
have affected corrective skill. In case error-information is not used or explored,
MM+ users are not better trained to detect and correct an error than MM- users.
Because this experiment revealed no information on how subjects dealt with
errors and error-information during practice, its true effect on subjects'
constructive and corrective skill cannot be established. In future research on
error-information, quantitative results should therefore be supported by
(observational) data regarding subjects' activity during practice. Another
question for future research is the effect of the cues and prompts generated by the

 CHAPTER 4

78

software. During practice, the effect of error-information might have been
overshadowed by the effect of the cues of the word processor. In future studies,
this effect can be eliminated by removing all system cues or by counting the
number of times a subject uses this information. Such experiments require an
experimental setting that differs from the one that was used here. Individual
subjects should be observed during practice as well as during the tests. Not only
do these observations provide information on the use of system cues during
practice and on the tests, they also reveal more about the actual use of the error-
information.
 The third hypothesis regarding subjects' self-confidence was partly supported
by the results. The error-information in the MM+ did not cause users to develop
higher self-confidence; confidence scores for MM+ users remained rather
constant. In the MM- group, however, self-confidence scores after the tests were
significantly lower than the scores after practice. So, although the expected
increase in self-confidence failed to occur, error-information did have a positive
effect on self-confidence.
 The reasons for the MM+ users' self-confidence to remain constant rather
than increase might be that subjects did not know in advance that manual usage
was not allowed during the test phase. Intermittent confidence scores might
therefore reflect subjects' self-confidence in word processing with the use of a
manual. Confidence scores after the tests thus represent self-confidence without
the use of the manual. Since most users had little or no experience with
WordPerfect, the absence of a manual could have lowered their final confidence
score.
 The present study showed error-information to have hardly any effect on
procedural skill (both constructive and corrective). From these findings, one
might conclude that including error-information in a manual only yields an
increase in amount of written information (something minimal manuals can do
without!). This conclusion is premature, however. Although error-information
had no effect on learning outcomes, it could have supported users in the
development of procedural skills. As the effect of error-information on users'
activity during practice is still unknown, it can not be decided as yet whether the
inclusion of error-information in a minimal manual is indeed functional.

References

Allwood, C.M. (1984). Error detection processes in statistical problem solving. Cognitive

Science, 8, 413 - 437.
Anderson, J.R. (1985). Cognitive psychology and its implications. San Francisco: Freeman.
Ashcraft, M.H. (1989). Human memory and cognition. Glenview: Scott Foresman.

 79 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

Bailey, R.W. (1983). Human error in computer systems. Englewood Cliffs: Prentice-Hall.
Brown, J.S. (1983). Learning by doing revisited for electronic learning environments. In M.A.

White (Ed.), The future of electronic learning (pp. 13 - 33). Hillsdale: Lawrence Erlbaum.
Brown, J.S., Burton, R.R., & deKleer, J. (1982). Pedagogical, natural language and knowledge

engineering techniques in SOFIE I, II and III. In D. Sleeman & J.S. Brown (Eds.),
Intelligent tutoring systems (pp. 227 - 282). London: Academic Press.

Card, S.K., Moran, T.P., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale: Lawrence Erlbaum.

Carroll, J.M. (1990a). An overview of minimalist instruction. Proceedings of the Twenty-Third
annual Hawaii International Conference on System Science (pp. 210 - 219). Washington:
IEEE.

Carroll, J.M. (1990b). The Nürnberg Funnel: Designing minimalist instruction for practical
computer skill. Cambridge: The MIT Press.

Carroll, J.M., & Mack, R.L. (1984). Learning to use a word processor: By doing, by thinking
and by knowing. In J.C. Thomas & M.L. Schneider (Eds.), Human factors in computer
systems (pp. 13 - 51). Norwoord: Ablex.

Cuff, R.N. (1980). On casual users. International Journal of Man-Machine Studies, 12, 163 -
187.

Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem solving.
Review of Educational Research, 54, 363 - 407.

Glaser, R. (1965). Toward a behavioral science base for instructional design. In R. Glaser
(Ed.), Teaching machines and programmed learning, volume 2 (pp. 771 -809).
Washington: Association for Educational Communications and Technology.

Glaser, R., & Bassok, M. (1989). Learning theory and the study of instruction. Annual Review
of Psychology, 40, 631 - 666

Graesser, A.C., & Murray, K. (1990). A question-answering methodology for exploring a
user's acquisition and knowledge of a computer environment. In S.P. Robertson, W.
Zachary & J.B. Black (Eds.), Cognition, computing and cooperation (pp. 237 - 267).
Norwood: Ablex.

Guthrie, J.T., Bennett, S., & Weber, S. (1991). Processing procedural documents: A cognitive
model for following written directions. Educational Psychology Review, 3, 249 - 265.

Horton, W. (1990). Designing and writing online documentation: Help files to hypertext. New
York: Wiley.

Jelsma, O., & Bijlstra, J.P. (1990). Process: Program for research on operator control in an
experimental setting. IEEE Transactions on Systems, Man, and Cybernetics, smc-20, 1221
- 1228.

Johannsen, G. (1988). Categories of human operator behavior in fault management situations.
In L.P. Goldstein, H.B. Andersen & S.E. Olsen (Eds.), Tasks, errors and mental models
(pp. 251 - 258). London: Taylor & Francis.

Kamouri, A.L., Kamouri, J., & Smith, K.H. (1986). Training by exploration: Facilitating the
transfer of procedural knowledge through analogical reasoning. International Journal of
Man-Machine Studies, 24, 171 - 192.

Lang, T., Lang, K., & Auld, R. (1981). A longitudinal study of computer-user behavior in a
batch environment. International Journal of Man-Machine Studies, 14, 251 - 268.

 CHAPTER 4

80

Lazonder, A.W., & Van der Meij, H. (1992). Towards an operational definition of the minimal
manual (Tech. Rep. No. IST-MEMO-92-02). Enschede, University of Twente, Dept. of
Instructional Technology.

Lazonder, A.W., & Van der Meij, H. (1993). The minimal manual: Is less really more?
International Journal of Man-Machine Studies, 39, 729 - 752.

Lewis, B.N. (1981). An essay on error. Instructional Science, 10, 237 - 257.
Lewis, C. & Norman, D.A. (1986). Designing for error. In D.A. Norman & S.W. Draper

(Eds.), User centered system design: New perspectives on human-computer interaction
(pp. 411 - 432). Hillsdale: Lawrence Erlbaum.

Mack, R.L., Lewis, C.H., & Carroll, J.M. (1987). Learning to use a word processor: Problems
and prospects. In R.M. Baeker & W.S. Buxton (Eds.), Reading in human-computer
interactions: A multidisciplinary approach (pp. 269 - 277). Los Altos: Morgan Kaufmann.

McCoy Carver, S., & Klahr, D. (1986). Assessing children's LOGO debugging skills with a
formal model. Journal of Educational Computing Research, 2, 487 - 525.

Mizokawa, D.T., & Levin, J. (1988). Standards for error messages in educational software.
Educational Technology, 28(4), 19 - 24.

Newell, A., & Simon, H.A. (1972). Human problem solving. Englewood Cliffs: Prentice Hall.
Njoo, M., & De Jong, T. (1993). Exploratory learning with a computer simulation for control

theory: Learning processes and instructional support. Journal of Research in Science
Teaching, 30, 821 - 844.

Norman, D.A. (1986). Cognitive engineering. In D.A. Norman & S.W. Draper (Eds.), User
centered system design: New perspectives on human-computer interaction (pp. 31 - 61).
Hillsdale: Lawrence Erlbaum.

Penrose, J.M., & Seiford, L.M. (1988). Microcomputer users' preferences for software
documentation: An analysis. Journal of Technical Writing and Communication, 18, 355 -
366.

Pickthorne, B. (1983). Error factors: A missing link between cognitive science and classroom
practice. Instructional Science, 11, 283 - 312.

Rasmussen, J. (1986). Information processing and human-machine interaction: An approach
to cognitive engineering. New York: Elsevier.

Redish, J.C. (1988). Reading to learn to do. The Technical Writing Teacher, 15, 223 - 233.
Roush, R. (1992). Taking the error out of explaining error messages. Technical Com-

munication, 39(1), 56 - 59.
Scharer, L.L. (1983). User training: Less is more. Datamation, 29(7), 175 - 182.
Singer, R.N. (1978). Motor skills and learning strategies. In H.F. O'Neil (Ed.), Learning

strategies (pp. 79 - 106). New York: Academic Press.
Stevens, A., Collins, A., & Goldin, S.E. (1982). Misconceptions in students' understanding. In

D. Sleeman & J.S. Brown (Eds.), Intelligent tutoring systems (pp. 13 - 50). London:
Academic Press.

Stillings, N.A., Feinstein, M.H., Garfield, J.L., Rissland, E.L., Rosenbaum, D.A., Weisler, S.E.,
& Baker-Ward, L. (1987). Cognitive Science: An introduction. Cambridge: MIT.

Van der Meij, H. (1992). A critical assessment of the minimalist approach to documentation.
SIGDOC'92 Conference Proceedings, 7 - 17.

Van Joolingen, W.R. (1993). Understanding and facilitating discovery learning in computer-

 81 TOWARD EFFECTIVE ERROR CONTROL IN MINIMALIST DOCUMENTATION

based simulation environments. PhD thesis, Eindhoven University of Technology, The
Netherlands.

Wærn, Y. (1991). On the microstructure of learning a wordprocessor. Acta Psychologica, 78,
287 - 304.

Wendel, R., & Frese, M. (1987). Developing exploratory strategies in training: The general
approach and a specific example for manual use. In H.J. Bullinger, B. Schackel & K.
Kornwachs (Eds.), Proceedings of the second IFIP conference on human-computer
interaction (pp. 943 - 948). Amsterdam: Elsevier.

82

 83

CHAPTER 5

Verifying the preconditions for error-based
learning9

Human errors can play a useful role in learning to use software.
However, whether people actually learn from their errors
depends on the degree to which they are controlled in the
learning process. In a minimal manual, such error control is
assumed to be brought about by the error-information. An
experiment was performed to validate this assumption. Eight
subjects were given a minimal manual for a word processor.
During practice, the experimenter recorded their learning
activities. The results indicated that approximately 40% of all
errors were supported by the error-information in the manual.
Moreover, error-information was frequently consulted to detect
and correct errors and to check if an error had occurred. In the
discussion, suggestions to further improve the manual are
identified.

5.1 Introduction

People make errors when they try to learn something new. This is particularly
true of computer systems. No matter how user-friendly the software and the
training manual, new users will undoubtedly make errors.
 Although behaviorists consider(ed) errors to be undesirable in learning, the
current view is that errors are a valuable opportunity to clarify misconceptions
in the learner (Mory, 1992). However, errors do not necessarily play a useful
role in learning. Errors will only have a positive effect when they are
controlled in the learning process. That is, when the learners are supported in
dealing with their own erroneous actions.
 Such error control is possible by including error-information in the manual.
To identify the conditions under which error-information will be most
effective, a model of error-recovery was developed, explaining what happens

9Lazonder, A.W. (1994). Minimalist documentation and the effective control of errors. In M.
Steehouder, C. Jansen, P. van der Poort & R. Verheijen (Eds.), Quality of technical
documentation (pp. 85 - 98). Amsterdam: Rodopi. (with modifications)

 CHAPTER 5

84

when someone tries to recover an error (Lazonder & Van der Meij, 1994
[chapter 4]). According to this model, the process of undoing errors expires
from detection through diagnosis to correction. In the detection phase, the user
observes that 'something is wrong'. During the diagnosis phase, the user will
reason about the exact nature of the error and its most likely cause. Based on
the outcome of this phase, the user selects and executes a correction method.
 To allow for effective error control, the error-information in the manual
should be designed in line with the stages of this model. Good error-infor-
mation should therefore consist of: (a) a characterization of the system-state to
detect and identify the error, (b) conceptual information about the likely cause
of the error, and (c) action statements, for correcting the error.
 The facilitative effect of error-information has yet to be proven. An early
experiment showed that error-information exerts hardly any effect on learning
outcomes (Lazonder & Van der Meij, 1994 [chapter 4]). The experiment
produced some promising results, however. The authors therefore concluded
that error-information in manuals should be further investigated, taking into
account the fact that effect of error-information depends on a number of
factors, some practical, some theoretical.
 On the theoretical side, a distinction is necessary between correction
methods. In general, an error can be corrected by undoing actions (corrective
method) or by (adequately) performing those actions again (reconstructive
method). Examples of both correction methods are presented in Lazonder and
Van der Meij (1993 [chapter 6]) and in Van der Meij and Carroll (in press). If
people mainly apply reconstructive correction methods, only the detection and
diagnosis part of the error-information will contribute to its effect.
 At least four considerations are important on the practical side. Firstly, one
must be sure that the learners make (enough) errors. There is ample evidence
that they do: research showed that new users spend 30 to 50% of their time on
dealing with errors. (e.g., Bailey, 1983; Graesser & Murray, 1990; Van der
Meij, 1992). Secondly, a significant part of these errors must be supported by
the error-information. If not, the error-information can be of little use in error-
recovery. Thirdly, the users must actually use the error-information to recover
errors. Fourthly, the experiment must adequately assess the processing of
error-information both during practice and during the test phase.
 The effect of error-information can then be examined by contrasting a
manual with error-information with a manual from which all error-information
is removed. The main hypotheses of this experiment relate both to the learning
activities and learning outcomes. Learners who use a manual containing error-
information are hypothesized to produce higher scores on both measures. That
is, they are expected to make less errors during practice and to recover errors
faster. As a consequence, they are expected to need less time to complete

PRECONDITIONS FOR ERROR-BASED LEARNING

85

practice. Moreover, these learners are hypothesized to perform better on test
items measuring constructive and corrective skills.
 A small-scale study was conducted to examine whether error-information
does in fact support learning (i.e., the practical considerations). Subjects were
given a minimal manual for a word processor. The manual contained error-
information that was designed according to the criteria for effective error
control. Subjects were expected to fulfil all necessary conditions, that is, they
were expected to make errors (that are supported by the error-information)
and to use the error-information to recover these errors.

5.2 Method

5.2.1 SUBJECTS

Eight subjects (2 men and 6 women) volunteered in this study. They were
recruited by means of an advertisement in a local newspaper. The subjects'
age varied: the mean age was 38,5, with a range of 23 to 55. The subjects'
educational level was also widely divergent: 2 subjects had finished lower
general secondary education while 1 subject had a university degree. All
subjects had little or no computer experience and no experience with word
processing.

5.2.2 MATERIALS

Technical equipment
The goal of the experiment was to teach basic word processing skills with the
menu-driven version of WordPerfect 5.1. WordPerfect was run on an Olivetti
286 personal computer. To keep subjects from using system cues,
WordPerfect's help-function was disabled. A registration program was
installed on the computer. It generated a logfile of all of the subjects'
keystrokes. Whenever a key was struck, time and keypress were recorded.
 The experimenter used the ERR-system (Error-Recovery Registration
System) to register subjects' actions in dealing with errors. The ERR-system is
completely mouse-controlled and runs on an Apple Macintosh computer
under HyperCard. By clicking icons, the experimenter can record when (a) an
error is made, (b) an error is detected, and (c) the error state is ended. When a
given icon is clicked, additional information (e.g., type of error, quality of the
solution) can be entered for that measure.

 CHAPTER 5

86

Instructional manual
The manual was a minimal manual, designed especially for the experiment. In
all, approximately 20% of the manual consisted of error-information. More
specifically, error-information was included at a rate of about once after every
3 action steps. All the error-information was designed according to the criteria
for effective error control. A detailed description of the manual's design prin-
ciples can be found in Carroll (1990), Lazonder and Van der Meij (1992, 1993
[chapter 3]) and Van der Meij (1992).

5.2.3 PROCEDURE

All sessions took place in a quiet room. Each session lasted one day, with a
maximum of 8 hours. There were short breaks for coffee and lunch.
 At the outset of the session subjects received instructions. They were told
to work through the manual at their own pace. The subjects were instructed to
deal with errors themselves. The experimenter would not offer any help,
except when a system error had occurred or when they were stuck for more
than 15 minutes. In addition, they were asked to think aloud. This was
rehearsed on a simple task (tie a knot in a rope).
 After the instruction, subjects were seated at a desk with the computer and
the printer. They received a manual and a diskette containing all documents to
be used in practice. During practice, the experimenter sat at a table nearby to
record a subject's corrective actions.

Coding and scoring
Three measures were used to assess whether the conditions for error-based
learning are fulfilled: number of errors, type of errors and use of error-
information.
 An error was defined as every action that does not contribute to the user's
goal. The user's goal is represented by the action steps in the manual. The total
number of errors was registered during practice.
 Similar to Lazonder and Van der Meij (1994 [chapter 4]), errors were
classified as semantic, syntactic or slip. Errors were further classified as
supported and not-supported by the error-information. An error is supported
by the error-information when the error-state − and therefore the correction
method − is specified by the error-information. When the error-information
does not embody the error-state, the error is classified as not-supported.
 With the use of error-information, a difference was made between correct
and incorrect performance. During correct performance, the number of times
error-information was read, used and explored was recorded. Error-infor-
mation is read when the user merely reads the error-information. Error-infor-

PRECONDITIONS FOR ERROR-BASED LEARNING

87

Table 5.1
Number and type of errors

 Supporteda Not
supportedb

Total

Semantic
Syntactic
Slip

32
35
11

71
93
42

103
128
53

Total 78 206 284

a Number of errors supported by error-information b Number of errors not supported by error-information

mation is used when the users reads the error-information and looks at the
screen to check whether the described error-state has occurred. Error-infor-
mation is explored when the user reads the error-information and tries out the
suggested correction method. In case of an error, it was registered whether
error-information was used to detect or to correct the error.
 All data were registered by the ERR-system. To increase reliability, these
data were compared to the data from the logfiles.

5.3 Results

5.3.1 NUMBER AND TYPE OF ERRORS

Table 5.1 shows the number of errors. In all, the subjects made 284 errors
during practice. The mean error score was 35.50 (SD=10.07), with a range of
20 to 50.
 As the column totals indicate, there were 103 semantic errors (36%), 128
syntactic errors (45%) and 53 slips (19%).
 Approximately one third of all errors were supported by the error-infor-
mation in the manual. The remaining portion of errors were not-supported.
The mean number of supported errors was 9.75. The mean number of errors
that are not supported by the error-information was 25.75.

5.3.2 USE OF ERROR-INFORMATION

The frequency with which the error-information was used during correct
performance (constructive use) as well as during incorrect performance
(corrective use) are presented in Table 5.2.
 As this table indicates, the subjects frequently read and used the error-

 CHAPTER 5

88

Table 5.2
Use of error-information

User activity # M SD Range

Constructive
Read
Used
Explored

 159
 168
 14

 19.88

21.00
1.75

 5.87
 5.95
 3.41

 11-31
 13-28
 0-10

Corrective
Detection
Correction

 31
 55

 37.20a
 71.63b

 23.73
 28.84

 13-78
 30-86

Note. The corrective use of error-information is computed for supported errors only.
a Percentage of errors detected with the use of error-information b Percentage of errors corrected with the use
of error-information

information as part of their constructive activity. On average, error-infor-
mation was read 20 times and was used 21 times during correct performance.
Error-information was explored less frequently. The mean number of
explorations was 1.75, with a range of 0 to 10.
 During incorrect performance, error-information was used to detect or
correct errors. Approximately 37% of the supported errors was detected with
the use of the error-information in the manual. The subjects used the error-
information to correct an error more frequently. The error-information was
applied for this purpose in 70% of the occasions. The range for this measure
was 30 to 86%. In all, subjects spent 25.33% of their time on error-recovery
(SD=4.20).

5.4 Discussion

This study examined the practical conditions for error-based learning from
minimalist documentation. As the main hypothesis, it was stated that subjects
who used a manual with error-information would satisfy all the practical
conditions for error-information to have a facilitative effect on learning.
 The first hypothesis, which stated that the subjects would make errors, is
clearly supported by the results. On average, the subjects made 36 errors; the
number of errors varied from 20 to 50. When compared with the number of
action steps in the manual, it turns out that approximately one out of four
actions was performed incorrectly. Considering the fact that it took subjects

PRECONDITIONS FOR ERROR-BASED LEARNING

89

25% of their time to recover from these errors, this error frequency seems
adequate to develop and practice error-recovery skills. Moreover, as practice
is still primarily concerned with developing constructive skills (i.e., 75% of
practice time), it seems unlikely that subjects will get discouraged by the
abundance of their errors and, as a consequence, abandon training.
 The second hypothesis regarding the number of errors that are supported
by the error-information, is also supported by the results. Approximately thirty
percent of the errors were supported. Although this percentage does in itself
not seem extremely high, it is satisfactory. The error-information in a minimal
manual is designed to cover the most frequently occurring errors. It is
therefore unrealistic, if not impossible, to expect error-information to cover
every possible error. In addition, subjects have different styles of using the
manual. Some spell out everything, while others process the information in the
manual in a more exploratory fashion. As the subjects who explore do not
follow the manual step-by-step, they will encounter problems different from
those covered by the error-information in the manual.
 Moreover, the data from the observations provide valuable insight into the
subjects' most prevalent errors. These findings suggest several ways to further
improve the error-information. Firstly, the coding of supported errors should
be modified for the 'Do it yourself' sections. Many errors were made in these
sections. Due to the nature of these sections these errors were not supported
'on the spot', but in the section that is referred to. By coding these errors as
supported, the number of supported errors will increase considerably.
Secondly, error-information was designed to support the most prevalent
errors. Which errors are prevalent mainly depends on a subject's prior
computer experience. By selecting subjects whose computer experience
corresponds with the errors that are supported in the manual, the number of
supported errors is further increased. This study further revealed some of the
typical problems users encounter in learning a word processor. Based on this
information, the error-information in the manual can be further improved.
 Subjects were further expected to use error-information to detect and
correct errors. This hypothesis is also supported by the results. Subjects used
error-information to detect errors as well as to correct them. The results
showed that error-information was consulted more often to correct an error
than to detect one (37% and 72% respectively). This may be due to the fact
that, on executing a command, subjects almost immediately look at the screen
to see its result. In case of an error, the subject will notice that "something is
wrong" before they return to the manual. Errors are therefore more likely to be
detected while the subject is looking at the screen than when he or she is
reading the manual. When an error is detected by looking at the screen, the

 CHAPTER 5

90

user often returns to the manual for its correction. The error-information is
then used for correction only.
 In addition, subjects frequently consulted the error-information to check
whether the described error-state had occurred. The constructive use of error-
information indicates that subjects evaluated their actions regularly. The error-
information thereby provides them with a safety net. They are assured that
nothing is wrong as long as the described error-state does not occur. The users
are thus prevented from recovering so called false alarms (i.e., undoing correct
actions they consider erroneous).
 The present study showed all practical conditions for error-based learning
to be fulfilled. The outcomes of this study therefore allow for a valid
assessment of the functionality of error-information in minimalist tutorials.

References

Bailey, R.W. (1983). Human error in computer systems. Englewood Cliffs: Prentice-Hall.
Carroll, J.M. (1990). The Nürnberg Funnel: Designing minimalist instruction for practical

computer skill. Cambridge: MIT.
Graesser, A.C., & Murray, K. (1990). A question-answering methodology for exploring a

user's acquisition and knowledge of a computer environment. In S.P. Robertson, W.
Zachary & J.B. Black (Eds.), Cognition, computing and cooperation (pp. 237 - 267).
Norwood: Ablex.

Lazonder, A.W., & Van der Meij, H. (1992). Towards an operational definition of the
minimal manual (Tech. Rep. No. IST-MEMO-92-02). Enschede, University of Twente,
Department of Instructional Technology.

Lazonder, A.W., & Van der Meij, H. (1993). Error-information in tutorial documentation:
Supporting users' errors to facilitate initial skill learning. Paper submitted to Inter-
national Journal of Human-Computer Studies.

Lazonder, A.W., & Van der Meij, H. (1993). The minimal manual: Is less really more?
International Journal of Man-Machine Studies, 39, 729 - 752.

Lazonder, A.W., & Van der Meij, H. (1994). Effect of error-information in tutorial
documentation. Interacting with Computers, 6, 23 - 40.

Mory, E.H. (1992). The use of informational feedback in instruction: implications for
future research. Educational Technology: Research and Development, 40, 5 - 20.

Van der Meij, H. (1992). A critical assessment of the minimalist approach to documen-
tention. SIGDOC'92 Conference Proceedings, 7 - 17.

Van der Meij, H., & Carroll, J.M. (in press). Principles and heuristics for designing
minimalist instruction. Technical Communication.

 91

CHAPTER 6

The effect of error-information in minimalist
documentation10

People unavoidably make errors when they learn to use a
computer program. The current view on errors is that they can
either be helpful or disruptive, depending on the extent to which
they are controlled in the learning process. Such error control
can be brought about by including error-information in the
training manual, supporting the stages users go through when
dealing with an error. Good error-information should therefore
enable users to detect, diagnose, and correct errors. To
investigate the functionality of error-information, two minimal
manuals were experimentally compared. One manual contained
ample error-information, in the other error-information was
entirely absent. Subjects who used the manual containing error-
information were expected to perform better during practice as
well as after practice. The results bore this out. Error-
information resulted in superior corrective skill and did not
obstruct the development of constructive skill. In addition, it
gave users a more profound knowledge of how the software
works. Based on these findings the value of error-information is
discussed and ways to extend its potential are suggested.

6.1 Introduction

People's first impression of a computer program is vitally important for
initial acceptance, for productivity, and for continued use of that program.
Users will persevere with a program for only a limited amount of time. If
during this 'honeymoon' period too many problems, failures, and misunder-
standings occur, the program is rejected (Booth, 1991).
 One of the main reasons first-time users reject software is that it is often
confusing and (too) difficult to learn. This negative stance is caused by a
mismatch between the program and the user's model of it (Cuff, 1980).
Design team members frequently use themselves as models of the user, yet

10 Lazonder, A.W., & Van der Meij, H. (1993). Error-information in tutorial documen-
tation: Supporting users’ errors in initial skill learning. Paper submitted for publication.

 CHAPTER 6

92

the gap between designer and user is considerable. As Norman (1986) has
pointed out, users and designers have different mental models of the
program. They have different goals and perceive the software differently.
Prompted by this incongruity, users often misunderstand and misinterpret
the software. As a consequence, they make errors and get into trouble.
These problems may lead them to abandon their attempts to use the
software.
 Clearly, software designers are aware of the gap between their expertise
and the users' initial ignorance. Iterative user-tests of draft versions are
conducted to discover what elements of a program are problematic to users.
Some of these problems can be solved by redesigning the program. For
example, a new icon can be drawn to replace one that is frequently
misunderstood. Other problems can be solved by means of the program's
built-in support systems. Help facilities, warnings and error messages are
examples of this kind of solution. Yet a third way to accommodate users is
by designing tutorial documentation that enables them to master the
program without getting in (too much) trouble. This type of support is the
focal point in the present chapter.
 One might wonder whether any paper support is called for at all. Gilb
and Weinberg, quoted in Cuff (1980), stated that documentation should be
used as a symptom of poor design, not as a solution to it. Redesigning the
software and its programmatic support should overcome all of the users'
misunderstandings and errors. However, the present technical know-how is
not (yet) that advanced (Baber, 1991). Even with relatively user-friendly
programs, such as word-processors, considerably high failure rates have
been found to occur. For example, Carroll and Carrithers (1984) found that
users spent 25% of their time on dealing with errors. Other studies suggest
that this percentage may actually be as high as 50% (e.g., Arnold & Roe,
1987; Card, Moran & Newell, 1983; Graesser & Murray, 1990). Since many
of the users' errors are not covered by the programs' error support systems,
the task of helping users in error-recovery comes down to the manual.
 Until recently, most training manuals did not give users adequate support
in dealing with errors. Manuals concentrated on teaching users what they
can do with the software and how to do it (i.e., constructive skill), without
simultaneously training them to undo the things that have gone wrong (i.e.,
corrective skill) (Lazonder & Van der Meij, 1994 [chapter 4]). When the
development of corrective skills is ignored, errors are likely to have mainly
a negative impact on the user. They can, for example, give negative reinfor-
cement which, in turn, can demotivate and frustrate the learner (Glaser,
1965). Errors may also strengthen the (possible) computer anxiety of the
novice user and decrease self-confidence ("I am not smart enough to learn to

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

93

use such a complicated machine"). In addition, when errors cause system-
states that are difficult to leave, the user who lacks support may be forced to
turn the power off, losing all the work that was produced (Frese & Altmann,
1989).
 With adequate support, errors can be quite beneficial to learning. They
may help to direct the user to a more appropriate, perhaps even more
elaborate understanding of the program (e.g., Booth, 1991; Frese et al.,
1988; Pickthorne, 1983). They can help build confidence and skill because
users learn to deal effectively with unexpected situations. Moreover, errors
can also help stop premature automization of a skill (Frese & Altmann,
1989). For example, when users routinely employ a procedure that is incor-
rect for the given system state, this forces them to critically review their
actions. Errors may also force creative solutions and invite users to explore
new strategies (Frese & Altmann, 1989). For example, if a user accidentally
activates the typeover mode and makes an error because of this, it might
stimulate the user to explore the functions of this mode. Finally, the nature
of the learning experience should reflect the intended training outcomes as
much as possible. Users should therefore be taught constructive as well as
corrective skills (Wendel & Frese, 1987).
 In summary, two views on errors can be distinguished. Errors can be
disruptive or helpful, depending on the extent to which they are supported
during training. Given the fact of first-time users, detailed support is needed
in order to enhance the positive effects of errors and minimize the negative
ones. Such effective error control is possible by designing manuals that
support users' actions with error-information.

6.2 A general model of error-recovery

Error-information in a manual is informative when it supports users' needs.
Error-information should thus provide users with all the necessary
information to recover an error. But, exactly what information does a user
need? The answer to this question can be abstracted from models that
describe the stages a user goes through in dealing with an error (Brown,
1983; Curry, 1981; Jelsma & Bijlstra, 1990; Reason, 1990; Wærn, 1991).
The stages are: detection, diagnosis, and correction. These stages, which are
assumed to be passed through in this particular order, are detailed below.

6.2.1 DETECTION

Users must first discover that they have made an error before they may

 CHAPTER 6

94

initiate an attempt to recover it. Error detection is therefore conditional to
the other stages in the model. Errors can be triggered in two ways: internally
and externally (Allwood, 1984).
 In case of internal triggering, a user feels that he or she has done
something wrong, but there is no visible cue to confirm this notion (yet).
The user may, for example, feel insecure with the selected method, the com-
mand(s), or its execution. In thinking-aloud protocols this state is typically
signalled by questions like "Did I do this right?" or "I wonder, have I
completed all the necessary steps?".
 Internal triggering is not a sufficient condition for detection, however.
Misconceptions about the appropriateness of a solution method may lead to
undetected errors or to a delay in the detection of an error. On the other
hand, triggering can also occur if no error has been made (i.e., correct
performance is judged as erroneous). So, in addition to internal triggering,
the user has to spot the error on the screen to actually detect it. Locating an
error occurs by evaluating or reviewing the current system state and the
actions that were performed.
 Detection can also be prompted by two kinds of external cues: program
messages and program states. Program messages often relate to errors or
potential errors. For example, messages like "Printer not selected" or "Text
not found" signal the presence of a definite mistake. Other messages are less
direct, merely prompting users to reflect before committing a possible error.
The message "Delete Block No(Yes)" nicely illustrates this. The second
type of external triggering takes place when the user's actions result in an
unex-pected outcome on the screen. For instance, when a user tries to
increase the line spacing and finds that it decreases, he or she will probably
wonder what went wrong.
 Unlike internal triggering, external triggering can only occur when the
user perceives the right place on the screen. That is, when he locates the
place that shows that an error is made. For the two types of external cues
these places differ. Most program messages are displayed at a fixed
position, often at the bottom of the screen. Especially for novice users, these
messages may go unnoticed because they appear too far from the focal field
of attention.
 Program states may likewise not prompt immediate detection. Error
detection may be delayed when the appropriateness of a solution method
does not directly dawn on the user. For instance, a first-time user who
misplaces the cursor while marking a block of text often only perceives his
mistake after having moved or changed that block. Misconceptions about
the expected outcome can even cause errors to remain undetected. For
example, selecting 'Small Caps' to change the typeface in a way alters the

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

95

outlook of the characters. On looking at the screen, the user may infer that
his or her actions have lead to the desired outcome.
 In short, users often literally do not see that something on the screen is
not as it is supposed to be. Occasionally this is because nothing can yet be
seen. More often, however, users do not know where to look and what to
look for. In these cases error detection may be triggered only at a stage in
which error diagnosis and correction have become problematic.

6.2.2 DIAGNOSIS

After detection, users merely know that 'something is wrong'. They may, at
that stage, decide the error is not important enough and abandon its pursuit.
When a user decides to attend to it, he minimally attempts to establish the
exact nature of the error. That is, the user tries to find out 'what is wrong'.
 When triggering happens internally, diagnosing the nature of the error is
difficult because the user does not yet have a visible cue. Consequently, the
user has to compare the program's error-state with his original goal to reveal
its nature. Their contrast imparts the discrepancy between the observed and
the desired output, which, in turn, indicates 'what is wrong'.
 In case of external triggering, information on the nature of the error often
is inherent in the program state or message. For example, when a user
misspells the name of a file he wants to retrieve, the computer might prompt
"ERROR--File CHATPER1.TXT not found". In this example, the user can easily
infer that the characters t and p have been reversed. But not all program
states or messages (can) provide such detailed diagnostic information. For
example, in changing the margins of a document the program state reveals
little information on what is wrong. In addition, some system messages
merely indicate the presence of an error (e.g., "Runtime error in line 327").
 Having identified the nature of the error, users may reason about which
actions caused the error (McCoy Carver & Klahr, 1986). This will lead
them to know not only what went wrong but also why it went wrong. This
last step in diagnosis is hardly ever supported by program messages; most of
the time users have to infer what they did wrong on their own account. Such
inferencing can be very helpful to a deeper understanding of the program.

6.2.3 CORRECTION

Correction contains four different kinds of user activities: (a) goal setting;
(b) selection of the correction method; (c) planning the execution method;
and (d) physical execution of the corrective actions.

 CHAPTER 6

96

 The user begins with selecting a (repair) goal (Allwood, 1984; Arnold &
Roe, 1987; Card et al., 1983). Like constructive performance, corrective
actions are always goal directed. The top level goal is obvious: the gap
between the present and the desired outcome must be bridged. The user may
break down this overall goal into a number of sub-goals (e.g., Anderson,
1985; Frederiksen, 1984; Rasmussen, 1986). For example, the goal 'correct
a typo' may be subdivided into the sub-goals 'move the cursor', 'delete the
incorrect text', and 'type the correct text'.
 Next, the user decides on following a corrective or a (re)constructive
method. In a corrective approach users really make changes in the document
that correct the error(s). For example, they may remove obstacles that are
blocking newly chosen options, or they may undo the error-state. Users can
also opt for a (re)constructive method, meaning that they simply try to
perform the constructive actions again. By paying more attention they hope
to do it right this time.
 Which of these two approaches will be employed, depends on the nature
of the error. Corrective methods practically always work, they enable users
to remedy any type of error. They are, however, also more difficult to learn
because they are always situation-specific and tend to require more actions
than (re)constructive methods. The latter method has the disadvantage that it
does not always work or that it leads to a loss of information. In addition,
they can leave behind some information (e.g., uncorrected hidden codes)
that can affect later actions or they may lead to a loss of information.
 The error-state thus seems to dictate which method is most appropriate.
There are, however, many situations in which both approaches work. For
example, when a new line spacing code is placed before the old one, the
user can correct the error by deleting the old code (i.e., a corrective
method), or by moving the cursor to the right place and inserting the new
code again (i.e., a (re)constructive method). When both methods are
applicable, method selection is handled by selection rules that allow the user
to choose between methods (see Card et al., 1983).
 Third, the selected method is planned for execution. It is translated into a
physical action-sequence. The user selects the commands that will be used
and determines in which order they will be executed. The last action in the
model is the execution of the commands. These last two steps may be
executed simultaneously. That is, users may not plan the whole action
sequence in advance but plan and execute step by step.

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

97

6.3 Principles for designing error-information

The error-recovery model describes a user's action(s) in dealing with an
error. To adequately support these actions, the training manual should
incorporate error-information that parallels this recovery process. In desig-
ning good error-information several principles should be taken into con-
sideration. These design principles relate to the content and presentation of
error-information.

6.3.1 CONTENT

Error-information should explicitly specify when an error has occurred and
what must be done to get out of the error state (Lang, Lang & Auld, 1981;
Allwood, 1986). Moreover, as novice users often find it difficult to get to
know the exact nature and cause(s) of the error (e.g., to understand what the
error message means, or to infer the steps that led to the error, see
McKendree, 1990), it should also assist the user in diagnosis. Good error-
information should therefore contain (a) a characterization of the system-
state supporting the detection of the error, (b) conceptual information on the
nature and likely cause(s) of the error, and (c) action statements for correc-
ting the error (Lang et al., 1981; Mizokawa & Levin, 1988; Roush, 1992).
 This design principle suggests uniformity in how a user's corrective
actions should be supported. This is not the case, however. Not every error
should be addressed in the same way. Designing error-information that is
adaptive to a user's actions therefore requires a more elaborate description
of what is meant by an error.
 A common classification of error is that into semantic errors, syntactic
errors, and slips (sometimes referred to as typing errors) (e.g., Douglas &
Moran, 1983; Lewis & Norman, 1986; Norman, 1983; Reason, 1990).
Semantic errors are mistakes that occur at the level of the intention. That is,
the user's intention to act is not appropriate for achieving his goal. Semantic
errors thus occur when an inadequate command is chosen to achieve a given
goal. For example, the user may select 'Create Horizontal Line' to try to
underline a word. In case of syntactic errors and slips, the user's intention is
adequate, but the performance is deficient. When a correct command is
carried out improperly, it is called a syntactic error. A typical example of a
syntactic error in WordPerfect is ending the search mode by pressing the
ENTER key instead of the F2 key. Slips are small errors at the keystroke level
(e.g., mistyping the word in the search mode).
 These different error types require different handling by the error-infor-
mation. For example, semantic errors are usually more difficult to detect

 CHAPTER 6

98

than syntactic errors or slips (Frese & Altmann, 1989; Lewis & Norman,
1986; Rizzo, Bagnara & Visciola, 1987). In a semantic error, the user's
intention is incorrect. When he or she compares the outcome to his goal,
they will match. Consequently, there is no internal triggering, and visible
contrasting evidence comes only when the selection of a path through the
menus has been completed. For syntactic errors and slips, the discrepancy
between the intended outcome and the actual outcome often can be
observed immediately and easily on the screen (i.e., external triggering).
Semantic errors therefore require specific information for detection,
whereas a more general description of the error-state is satisfactory for
syntactic errors and slips.
 Unlike detection, diagnosis is often more complex for syntactic errors
and slips because the user cannot suffice by deciding that a wrong method
has been used. Instead, he or she must infer which particular command or
action was executed incorrectly. The error-state of a syntactic error or a slip
often is more open to multiple interpretations, and therefore requires a
thorough understanding of the software to make good inferences. For
example, when the screen remains empty after an attempt to retrieve a
document, the user's first reaction may be to question the method and try
again, this time succeeding because he or she does not make the typo that
caused the error in his or her first attempt. Syntactic errors and slips thus
require more support in diagnosis, especially since a good understanding of
what caused an error can prevent the occurrence of this error in the future.
 Correction is to a great extent independent of the type of error. Most
programs nowadays enable at least two corrective strategies. Users may
choose between a generic way to correct an error and a specific one. A
typical example of a generic strategy in Apple Macintosh programs is the
undo-command that cancels the latest command. In most MS-DOS
programs, the ESC-key serves this function. Since generic correction
strategies do not work for all errors, specific strategies (e.g., "Press the F7
key and type an N twice. When the screen is empty, retrieve the new
document") may sometimes be necessary. Because generic methods can be
repeated over and over again, they can be learned and applied more easily.
Therefore, generic correction strategies should always be treated before
specific ones.

6.3.2 PRESENTATION

Not every single keystroke should be accompanied by error-information. In
a recent paper it has been argued that error-information should at least
support actions that are error-prone (Lazonder & Van der Meij, 1994

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

99

[chapter 4]). Many such situations arise when automaticity leads to an error
(Booth, 1991) or when a false analogy is used (Allwood & Eliasson, 1987).
In WordPerfect an illustrative example of an automaticity error is that of
users who learn to search a string of text. Instead of activating the search-
command by pressing the F2 key, they automatically press the ENTER key,
the default action to close off a command. An instance of an analogy error
occurs when a user substitutes a "1" (the number one) with an "l" (the
character l) in typing a filename. Although these characters are
interchangeable on a typewriter, they have different meanings in word-
processing.
 Error-information should also be given when errors are difficult to
correct (Van der Meij & Carroll, in press). That is, when the error-state calls
for a specific correction strategy that involves many corrective steps. In the
example of clearing the screen before retrieving a document, users should
be told how to correct the error, for else they may never be able to remedy
the situation themselves.
 Perhaps the most important problem to novice users is that errors can
accumulate, getting them deeper and deeper into an error-state, hence
deeper and deeper in trouble. To prevent such accumulation problems, the
right timing (i.e., placement) of the error-information in the manual is
important. Error-information should be presented on the spot, directly after
the actions it refers to (cf. McKendree, 1990; Mory, 1992). Error-
information should thus allow for an early detection of errors, which, in
turn, prevents errors from piling up, facilitates error-recovery, and
minimizes the chance of loosing previous work.
 Presenting the error-information 'in context' has the additional benefit
that the program's cues can be exploited. By describing the program's
(visible) cues in the detection part of the error-information, users receive an
exact description of the error state. This facilitates the detection of an error,
as users merely have to compare the described error-state to the current
system state. Consequently, error-information should be given directly after
actions that produce a distinct, observable message on the screen.
 Finally, a clear textual and graphical presentation of error-information is
indispensable as well. In keeping with the error-recovery model, error-
information should be stated in the same detection-diagnosis-correction
format throughout. This sequence is always maintained, although small
stylistic variations are possible. In addition, error-information has to be
signalled to indicate its distinct nature and to facilitate recognition. For this
reason we propose to set the error-information in italics, not in the least
place because italics tend to be read (a little bit) more slowly (Hartley,
1985), which may be helpful for having users execute the corrective steps

 CHAPTER 6

100

1. If the text A:\LETTER1.WP does not ap-
pear, you have forgotten to clear the
screen. Press the F7 key and type an N
twice to clear the screen as yet.

Error type: semantic
Problem: detection and correction
Solution: the error-state is explicitly specified because the text
of the file letter1.wp will appear on the screen anyway.
Specific correction information is necessary: this is the only
way to correct the error.

2. If the text Document to be retrieved: does
not appear on the screen, you have
selected the wrong command. Press the
F1 key to rectify your choice.

Error type: semantic
Problem: detection and correction
Solution: specific detection information to enable early
detection. A generic correction method can be used to correct
the error. Note that a specific diagnosis is fairly impossible
here.

3. If you have inserted the text at the wrong
place, you have positioned the cursor
wrongly before pressing the ENTER key.
Remove the text again.

Error type: syntactic
Problem: diagnosis
Solution: detection and correction can easily be inferred by
looking at the screen. Because the cut and paste function often
is elusive to new users, diagnosis of the cause of the error is
explicitly specified.

4. If you cannot entirely select the words
"half a million dollars" you did not
position the cursor at the beginning of
this text before activating the block
function. Press the F1 key to undo the
block function.

Error type: syntactic
Problem: diagnosis and correction
Solution: correctly positioning the cursor is frequently over-
looked. Therefore, the cause of the error is explicitly included.
Correction is a major problem as well. Unless the block
function is switched off, the user cannot proceed. A generic
correction method can be applied.

5. If the text Drive not ready reading drive
A appears, you have not inserted the
diskette deep enough into the drive. Insert
it again so that the button pops up. Then
type a 1

Error type: syntactic
Problem: detection, diagnosis, correction
Solution: detailed information for every error-recovery stage. A
specific correction method is the only way out here. Also note
that the full-stop at the end of the last sentence was omitted to
prevent an accidental typing error.

6. If the screen remains empty, you have
probably made a typing error. Retype the
name of the file and press the ENTER key.

Error type: slip
Problem: diagnosis and correction
Solution: specific information on diagnosis is included because
it is not at all clear what caused the screen to remain empty. A
specific correction method is the most efficient way to correct
the error.

Figure 6.1
The left column shows six examples of error-information that are extracted from a
minimal manual for WordPerfect. The right column characterizes each example by
specifying the type of error, the users' main problem(s) in recovering from that
error and a rationale for the content of the error-information.

correctly.
 Figure 6.1 presents a few examples of how the above design principles
can be implemented. At this point, an important limitation should be men-
tioned. Errors on the task level cannot be anticipated by the error-infor-
mation. A formula in a spreadsheet application can, for example, be entirely

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

101

correct but still computes useless values with regard to the content. Similar-
ly, the error-information in the manual cannot cover a user's grammar and
punc-tuation errors in word-processing.

6.4 Investigating error-information

To our knowledge, the effect of error-information in manuals has hardly
been studied. In a previous experiment we compared the learning outcomes
of users who were trained either with or without error-information. The
results showed that error-information did not improve or decrease the sub-
jects' performance during and after training (Lazonder & Van der Meij,
1994 [chapter 4]). Post-hoc analyses revealed some shortcomings that might
account for this non-effect. For example, during the experiment (and not in
the pilot) a ceiling effect occurred for one of the corrective tests. In
addition, most of the subjects' errors were semantic, whereas the error-
information mainly supported syntactic errors. Furthermore, detailed
analyses of the users' errors led to the principles for the design of error-
information described earlier.
 After making the necessary changes, another, exploratory study was
conducted to find out whether the revised manual might lead to a better
assessment (Lazonder, 1994 [chapter 5]). The results of this study indicated
that much more errors were supported by the new manual (approximately
40%). Users frequently consulted the error-information to detect and correct
errors. They also used the error-information as a means to check if they
were still on the right track.
 The observational data of this study revealed directions to further
improve the manual. Tasks that were prone to errors because of their
conceptual complexity to new users were removed (e.g., copying text, using
function keys as shortcuts). Tasks and commands that were frequently
looked up during practice (e.g., making a block of text, the REVEAL CODES
command) were given distinct headings to allow for easy reference. One of
the most striking changes with regard to the error-information is that its
gradual fading (in presence as well as in content) was removed. As a
consequence, both the frequency with which error-information is presented
and the extensiveness of the directions to recover from an error is identical
for all chapters in the manual. The positioning of error-information was
refined as well. In the revised manual, error-information is always preceded
by action steps that produce some visible cue on the screen.
 This led to the present study in which the effect of error-information on
user behavior was examined. In the experiment, half of the subjects were

 CHAPTER 6

102

given a training manual with error-information (MM+) while the other half
worked with a manual that contained no error-information (MM-). The main
hypotheses relate both to the learning activities and the learning outcomes.
Overall, MM+ users were expected to require less time to complete
practice. This is so because, in the course of practice, they were supposed to
commit fewer errors and to recover from their errors faster than MM-
subjects. The inclusion of error-information should further be beneficial for
the users' scores on performance tests. More specifically, MM+ users should
have developed better constructive skills. It was also expected that they
would be more knowledgeable and skilled in detecting, diagnosing, and
correcting errors.

6.5 Method

6.5.1 SUBJECTS

Fifty adult volunteers (10 men and 40 women) participated in the ex-
periment. They were recruited by means of an advertisement in a local
newspaper. The subjects' mean age was 36 (SD=10.0). Their educational
background varied from secondary education to university. All subjects had
less than 100 hours of computer experience11 and no experience with the
experimental software.
 The subjects were randomly assigned to one of the two experimental
conditions. There were 25 subjects in the MM+ group and 25 subjects in the
MM- group. Checks on the random allocation to conditions showed the two
experimental groups to be essentially equivalent with regard to age, sex,
educational level, intelligence, typing skill, and prior experience with com-
puters.

6.5.2 MATERIALS

Technical equipment
The experiment was performed on an Olivetti 286 personal computer with
the menu-driven version of WordPerfect 5.1. WordPerfect's help-function
was disabled to restrain subjects from using system cues. A registration
program was installed on the computer. It generated a logfile of all of the

11 this measure conflicts with the definition of novice users presented in chapter 1. However,
subjects with more than 50 hours of computer experience worked as data processors or bank
employees. As their interaction with the computer merely involved entering data, they were
considered novices.

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

103

subjects' actions. Whenever a key was pressed, time and keystroke were
recorded.
 The experimenter used the ERR-system (Error-Recovery Registration
System) to log a subject's actions in dealing with errors. This system is
completely mouse-controlled and runs on an Apple Macintosh computer
under HyperCard. By clicking icons, the experimenter can record when (a)
an error is made, (b) an error is detected, and (c) the error-state is ended.
When a given icon is clicked, additional information (e.g., type of error,
quality of the solution) can be entered for that measure. The clock time of
both computers was synchronized to allow for crossreferencing between
logfiles. Only measures with satisfactory inter-observer reliability scores
(>.70) were used in the experiment. Measures with scores below .70 were
rerated by checking the subjects' logfiles.

Manuals
Subjects received a manual (MM+ or MM-) and a training diskette. Both
manuals were minimal manuals, designed especially for the experiment and
refined on the basis of several pilot tests (see Lazonder, 1994 [chapter 5]).
The two manuals differed only with regard to the error-information. In the
MM+, error-information was presented frequently (i.e., 45 times). In all,
over 35% of the MM+ consisted of error-information, designed according to
the heuristics that were detailed above. The different types of error were
equally addressed by the error-information. The MM- contained no error-
information at all. A more detailed description of the MM+ can be found in
Carroll (1990), Lazonder and Van der Meij (1993 [chapter 3]), and Van der
Meij and Lazonder (1993).

Tests
Subjects' intelligence was assessed by means of a standardized intelligence
test (Raven, 1986). Three tests were used to assess learning outcomes.
 A constructive skill test measured subjects' constructive skill. It
consisted of 9 items. All items addressed elementary word processing tasks
that were trained during practice (e.g., changing the line spacing,
underlining words).
 Two tests assessed the subjects' capacities in dealing with errors: a
knowledge and a skill test. The corrective skill test was performed on the
computer. Subjects had to detect and correct 8 errors (5 semantic, 3 syntac-
tic) in a task document. The corrective knowledge test was a paper and
pencil test consisting of 9 items. Each item presented a word processing task
and a screendump, showing the result of the actions that were performed to
accomplish that task. For each item subjects had to mark all possible errors

 CHAPTER 6

104

(i.e., detection). In case of an error, they also had to specify its most likely
cause (i.e., diagnosis) and a way to correct it.

6.5.3 PROCEDURE

All experimental sessions took place in a quiet room. Each session lasted
one day, with a maximum of 8 hours. During the first half hour subjects
completed the intelligence test (personal data such as age, sex and computer
experience were collected by telephone). The remaining 7.5 hours were
spent on word processing. There were short breaks for coffee, lunch and tea.
 The subjects were instructed to work through the manual in their own
way and at their own pace. They were told that the experimenter would
offer help only in case of a computer breakdown or when the subject was
stuck for more than 10 minutes. In addition, they were asked to think aloud
during practice. Thinking aloud was practiced on a simple task (tying a
bowline knot).
 Next, subjects were seated at a small desk with the computer and the
printer in front of them. They were given their manual (MM+ or MM-) and
a diskette, containing all documents to be used in practice. The manual
managed the learning process by alternating short explanations with many
practical exercises. During practice, the experimenter sat at a table nearby to
record the subject's corrective actions, using the ERR-system.
 After practice, the subjects were given the constructive skill test and the
corrective skill test. A counterbalanced administration was used to control
for order effects. After these tests, the subjects completed the corrective
knowledge test. During all tests, the subjects were not allowed to consult
their manual or to ask for help of the experimenter.

Coding and scoring
During practice, the following measures were scored: time, number and type
of errors, the number of detected and corrected errors. Practice time was the
time to read the manual and complete the training exercises. With this
measure, a distinction was made between time spent on constructive and
corrective actions. Errors were scored as semantic, syntactic, or slip. For
each error, detection and correction were scored on a true-false scale.
 Constructive skill was defined by test time, performance success, and the
number of errors. Test time was scored as the time subjects' required to
complete the constructive skill test. Again, the difference between time on
constructive and corrective actions was made. Performance success was
indicated by the number of successfully completed items on this test. For
each subject, the number and type of errors in constructive performance was

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

105

registered as well. All of these scores were assessed by examining the
documents on diskette and the subject's logfile.
 Corrective skill was defined by three measures: detection, diagnosis, and
correction. Detection was scored as either right or wrong. Diagnosis was
scored on the following 4-point ordinal scale: (a) both cause and effect are
wrong; (b) wrong cause, right effect; (c) wrong effect, right cause; and (d)
both cause and effect are right. For corrective knowledge, a similar scale
was used. The correction method was scored as one that (a) obviously does
not try to correct the error, (b) attempts to correct the error but is
semantically and syntactically incorrect or incomplete, (c) is semantically
correct but contains one or more syntactic errors, and (d) is both
semantically and syntactically correct. The inter-rater reliability scores for
all corrective measures were satisfactory (Cohen's Kappa ≥ .80). Correction
on the corrective skill test was defined as the number of adequately
corrected errors.

Data analyses
The majority of the data were analyzed by means of (M)ANOVA's, using
type of manual (MM+ or MM-) as independent variable. Mann-Whitney U
tests were applied to analyze the ordinal data. Where appropriate, the
effectsize (ES) was computed (in SD's) to establish the magnitude of statis-
tically significant results.
 Due to a computer break-down, incomplete scores were registered for
three subjects. In addition, one subject (MM-) did not get to the corrective
knowledge test and one MM+ subject did not complete the corrective skill
test. The data for these subjects were excluded on an analysis-by-analysis
basis, causing variable group sizes.

6.6 Results

6.6.1 LEARNING ACTIVITIES

The mean time subjects required to perform constructive and corrective
actions during practice is presented in Table 6.1. Overall, the MM+ users
were nearly 8 minutes faster than MM- users. This difference was
significant, F(2,46)=3.22, p<.05. Manual type also had a univariate effect
on corrective time: MM+ subjects spent a significant 38% less time on
dealing with errors (F(1,47)=4.35, p<.05, ES=.53). No effect was found for
constructive time (F(1,47)=.57). Apparently, subjects from both conditions
were equally fast at performing constructive actions.
 Table 6.1 also shows the mean number of errors during practice There

 CHAPTER 6

106

Table 6.1
Mean learning activity scores

 Condition

 MM+ MM-

Time
Constructivea
Correctiveb

132.2
27.0

(38.6)
(20.7)**

124.4
42.8

(34.2)
(31.0)

Errors
Semantic
Syntactic
Slip

8.4
8.8
2.8

(5.5)**
(5.0)*
(1.8)

12.7
11.6
2.8

(6.7)
(6.1)
(1.9)

Note. Time in minutes, Standard deviations in parentheses.
a Time spent on constructive actions b Time spent on corrective actions
* p<.10 ** p<.05

was a marginal multivariate effect of manual type (F(3,46)=2.66, p=.06), in-
dicating that, overall, MM+ users tended to make less errors than MM-
users. Although there was a trend of the MM+ group having made less syn-
tactic errors (F(1,48)=3.26, p<.10), a significant univariate effect was found
for semantic errors only (F(1,48)=6.14, p<.05, ES=.64).

Table 6.2
Mean error-recovery scores during practice

 Condition

 MM+ MM-

Detection
Time
Successa

0.4

90.1

(0.3)**
(9.0)*

0.6

85.9

(0.4)
(8.5)

Correction
Time
Successb
Effectivenessc
Efficiencyd

0.9

86.1
98.0
2.8

(0.5)**
(10.7)***
(3.8)
(3.5)

1.2

74.7
95.9
1.7

(0.5)
(14.2)
(6.6)
(1.0)

Note. Time in minutes, Standard deviations in parentheses.
a % of detected errors b % of successfully corrected errors c Mean number of successful corrections to

the number of attempted corrections x 100 d Mean number of successful corrections per time x 100
* p<.10 ** p<.05 *** p<.01

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

107

Table 6.3
Mean scores on the Constructive Skill Test

 Condition

 MM+ MM-

Time
Constructivea
Correctiveb

25.1
8.1

(11.8)
(9.2)

28.3
8.1

(12.5)
(7.7)

Performance
Successc
Efficiencyd

6.2

30.9

(1.5)
(17.1)

5.4

24.6

(1.8)
(20.2)

Errors
Semantic
Syntactic
Slip

5.2
2.5
1.0

(4.6)
(1.7)*
(1.1)

5.8
3.8
1.0

(4.3)
(2.2)
(1.1)

Note. The constructive skill test consisted of 10 items. Time in minutes,
Standard deviations in parentheses.
a Time spent on constructive actions b Time spent on corrective actions c Number of items successfully

completed d Number of items successfully completed per constructive time x 100
* p<.05

 Clearly, subjects in the MM+ group were expected to detect and correct
more errors during practice. The ratio of the number of detected errors to
the total number of errors is shown in Table 6.2. Whereas MM+ users
detected more errors, this difference was not statistically significant
(F(1,48)=2.85, p<.10). They were significantly faster at detecting errors,
however (F(1,48)=4.51, p<.05, ES=.52).
 MM+ users were also more successful in correcting errors. Manual type
significantly affected the number of successful corrections (F(1,48)=10.28,
p<.01, ES=.80). It also affected the time for error correction (F(1,48)=4.90,
p<.05, ES=.60). Apparently, MM+ users' were faster and better at correcting
errors than MM- users. However, the two groups did not differ with regard
to the effectiveness of correction (i.e., the number of successful corrections
to the number of attempted corrections; F(1,48)=2.04). Their efficiency
scores (i.e., number of successful corrections per time) were similar as well
(F(1,48)=2.61).

 CHAPTER 6

108

6.6.2 LEARNING OUTCOMES

Constructive skill
The mean time to complete the constructive skill test is presented in Table
6.3. As with practice time, constructive and corrective activities were
analyzed separately. There was no multivariate effect of manual type on
time (F(2,45)=.63). As can be seen from the mean scores, subjects from
both conditions were equally fast on this test.
 Table 6.3 also shows the mean performance success scores for construc-
tive skill. Overall, MM+ users produced as many correct solutions as MM-
users. An ANOVA on manual type by the number of successfully completed
items produced no significant effect (F(1,48)=2.51).
 Time and performance success were combined into a measure of perfor-
mance efficiency. As the mean efficiency scores in Table 6.3 indicate, there
was no significant difference between the two groups (F(1,46)=1.37). Users
from both conditions were equally efficient at performing constructive
actions.
 Finally, the number of errors were compared between groups. As the
mean error scores in Table 6.3 indicate, manual type did not affect this
measure (F(3,44)=1.62). Overall, MM+ users made as many errors as their
MM- counterparts. There was, however, a univariate effect of manual type
on the number of syntactic errors (F(1,46)=4.99, p<.05, ES=.58).

Corrective skill
Subjects' capacities in error-recovery were assessed by two tests: the correc-
tive knowledge test and the corrective skill test. Their skill in recovering
their own errors (i.e., errors on the constructive skill test) was examined as
well.
 The mean number of detected errors on both tests is shown in Table 6.4.
On the corrective knowledge test, manual type had a marginal multivariate
main effect on the number of detected errors (F(3,45)=2.50, p<.10). Overall,
MM+ users tended to be better at detecting errors than MM- users. Manual
type also had univariate effects on the number of detected semantic errors
(F(1,47)=4.00, p=.05, ES=.48) and syntactic errors (F(1,47)=6.04, p<.05,
ES=.70). There was no effect on slips (F(1,47)=1.36). On the corrective
skill test, manual type did not affect the number of detected errors
(F(2,46)=.90). Apparently, MM+ users detected as many errors as MM-
users on this test.
 On the corrective knowledge test, subjects had to give a diagnosis for
each detected error. The mean rank scores for the quality of diagnoses are
presented in Table 6.5. As these scores indicate, the quality of diagnosis
differed in favor of the MM+ group. Overall, there was a significant effect

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

109

Table 6.4
Mean number of detected errors

 Condition

Error-type MM+ MM-

Corrective Knowledge Testa
Semantic
Syntactic
Slip

3.9 (0.9)*
2.1 (0.9)**
0.4 (0.5)

3.3 (1.3)
1.5 (0.9)
0.2 (0.4)

Corrective Skill Testb
Semantic
Syntactic

3.6 (1.3)
2.6 (0.7)

3.5 (1.4)
2.3 (1.1)

Note. Standard deviations in parentheses.
a Maximum score = 9 b Maximum score = 8
* p<.10 ** p<.05

of manual type on diagnosis (Z=2.02, p<.05). Moreover, manual type
affected the quality of the diagnoses on syntactic errors (Z=2.75, p<.01).
MM+ users also tended to be better at diagnosing semantic errors (Z=1.37,
p<.10).
 Table 6.6 reports the mean scores for error correction. On the written
corrective knowledge test, MM+ subjects came up with better correction
methods than MM- users. The overall quality of the correction method was
significantly higher for the MM+ group (Z=1.70, p<.05). MM+ users were
also better at correcting syntactic errors (Z=2.48, p<.01). No effect was
found for the correction of semantic errors (Z=1.02) or slips (Z=.65).
 Similar findings were obtained on the corrective skill test. Manual type
had a multivariate main effect on the number of corrected errors

Table 6.5
Mean scores of the quality of the diagnosesa

 Condition

Error-type MM+ MM-

Semantic
Syntactic
Slip

27.7*
30.3**
25.8

22.2
19.5
24.2

Note. Diagnoses were registered on the Corrective Knowledge Test only.
a Mean rank scores are presented. Higher rank indicates higher quality
* p<.10 ** p<.01

 CHAPTER 6

110

Table 6.6
Mean scores of the quality of correction

 Condition

Error-type MM+ MM-

Corrective Knowlegde Testa
Semantic
Syntactic
Slip

27.0
29.9
26.0

**

22.9
19.9
24.0

Corrective Skill Testb
Semantic
Syntactic

2.2
1.8

(1.1)**
(1.1)*

1.3
1.0

(1.2)
(1.1)

Note. Mean rank scores are presented for correction on the Corrective Knowledge Test, Standard
deviations in parentheses.
a Maximum score = 9 b Maximum score = 8
* p<.05 ** p<.01

(F(2,46)=4.35, p<.05, ES=.71). There were univariate effects on the number
of corrected semantic errors (F(1,47)=8.41, p<.01, ES=.79) and syntactic
errors (F(1,47)=5.23, p<.05, ES=.65).
 MM+ users were not better at recovering errors that occurred during con-
structive performance (see Table 6.7). Overall, manual type had no effect on
the number of detected errors (F(1,47)=.76), nor on the number of corrected

Table 6.7
Mean error-recovery scores during constructive performance

 Condition

 MM+ MM-

Detectiona
Semantic
Syntactic
Slip

67.6
76.3
92.3

(27.1)
(31.8)
(27.7)

66.4
72.3

100.0

(26.9)
(32.8)
(0.0)

Correctionb
Semantic
Syntactic
Slip

86.6
77.8

100.0

(24.5)
(37.1)
(0.0)

80.5
91.9

100.0

(28.5)
(17.1)
(0.0)

Note. Standard deviations in parentheses.
a % of detected errors b % of successfully corrected errors

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

111

errors (F(1,47)=1.68). Contrary to expectations, subjects from both
conditions were equally skilled at detecting and correcting their own errors.

6.7 Discussion

People tend to make errors while learning to use software. Among others
because these errors cannot be avoided, an approach was proposed that
exploits users' errors. That is, the training manual was supplied with error-
information that assisted users in dealing with errors. The general
hypothesis was that error-information would allow users to develop better
constructive and corrective skills.
 The outcomes of the study were mixed. Some of the results support the
expectations, others do not. In discussing these findings, the effects of
error-information on users' constructive skills will be addressed first. Next
the way in which subjects recover their own errors is discussed. Then the
outcomes for error-recovery on the corrective knowledge and skill tests is
considered.
 Error-information does not affect the time users spent on constructive
skills during practice. The fact that MM+ users were not faster at
performing constructive actions may well be explained by the presence of
error-information. Since more than 35% of the MM+ consisted of error-
information, MM+ users might have needed additional time to work through
their manual. Indeed, post-hoc analyses showed a positive correlation
between the constructive use of error-information (i.e., consulting error-
information in case no error had occurred) and constructive time (r=.41,
p<.05). This suggests that the error-information in the manual was
processed constructively and hence affected constructive training time.
 No positive effect was found on constructive skills after practice either.
Subjects from both conditions performed equally fast and equally skilled on
the constructive skill test. This non-effect may be explained from the fact
that the two manuals presented the same constructive content. Thus, the two
groups had received similar constructive training. On the other hand, one
could also argue that any positive effect of error-information on
constructive skill can emerge only when users are tested later than
immediately after practice. A delayed test might therefore be more
appropriate to reveal the deeper model and better problem solving skill
users in the MM+ condition may have developed (cf. Charney, Reder &
Kusbit, 1990).
 MM+ users were further expected to be more proficient at recovering
their own errors. Some results support this hypothesis. MM+ subjects

 CHAPTER 6

112

committed fewer syntactic errors on the constructive skill test, suggesting
that the error-information in the manual helps to prevent some errors. Other
hypotheses are not confirmed, however. MM+ users successfully detected
and corrected as many of their own errors as MM- users.
 Several reasons may account for the fact that the MM+ users did not
outperform their MM- counterparts. Firstly, WordPerfect's monitoring
options might have affected the number of detected errors. The users could,
for example, consult the print preview or use the REVEAL CODES command
to see if there was an error. We found that most subjects (i.e., 82%) actually
did so. Post-hoc analyses indicated that consulting these options and the
detection of syntactic errors were positively correlated (r=.31, p<.05). This,
in turn, also affected the number of correctly solved items on the construc-
tive skill test (r=.31, p<.05).
 Secondly, the program's system cues may have affected this measure
accordingly. System cues provide users with valuable information on the
occurrence of an error. Cues like "ERROR--FILE CHATPER1.TXT NOT FOUND",
"Exit WordPerfect? No (Yes)", or "Block on" may prompt users to review
their goal, their solution method, or the execution of some action step(s).
The present study was not designed to examine this effect, but it will be
interesting to address this issue in future studies as a means to assess the
effect of on-line error-information.
 Thirdly, the users' own errors may have been easy to correct. In this
respect it is important to recall that the ease or difficulty of correction is
independent of the type of error. Instead, it seems to depend on the
following factors: (a) whether a generic or specific corrective strategy can
be applied; (b) the number of corrective actions required; and (c) whether
the user has already made a particular error during practice. The latter factor
points at yet another explanation. Because the constructive skill test did not
contain transfer items, users were tested on problems that were treated in
the manual. In the new situations posed by transfer items, users are likely to
face errors they have not dealt with during practice, and hence here the
expected effects on error-recovery might emerge.
 With a few exceptions, the experiment clearly showed a number of
beneficial effects of error-information on subjects' corrective skills. During
practice it helped MM+ subjects to make fewer errors and enabled them to
detect errors faster. It also resulted in better and faster error-correction.
After practice the MM+ group tended to be better at detecting errors on the
corrective knowledge test. No effect was found for detection on the correc-
tive skill test. With regard to diagnosis and correction, significant effects in
favor of the MM+ group were found on both error-recovery tests. The
overall conclusion, therefore, is that error-information does facilitate the

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

113

development and improves the quality of corrective knowledge and skills.
Its benefits, however, mainly relate to diagnosis and correction.
 The finding of higher corrective capacities on the corrective knowledge
test is probably an important signal that MM+ users have developed a better
mental (working) model of the program. The knowledge test is critical in
that it is the only test in which users cannot profit from cues from the
program. It gives an assessment of unprompted recall; users have to rely on
their own knowledge to recover an error. In all other (skills) situations,
users can employ system cues for error-recovery. That is, they may receive
system warnings or error messages, task progression may be blocked, or
they may request information on the screen to reveal possible errors (e.g.,
they can ask for a print preview or activate the REVEAL CODES command).
Post-hoc analyses substantiated this. On the corrective skill test, the use of
WordPerfect's monitoring options and error detection were positively
correlated (r=.28, p<.05).
 What exactly contributes to the development of better error-recovery
strategies may not simply be a matter of a better understanding of the
program at hand. Surely, it is important for users to learn what to look for
on the screen, or what key(s) to press to correct an error. It may, however,
be just as important to develop good regulatory processes. Developing
superior error-recovery skills thus probably also hinges on teaching users
how to monitor their behavior. The presence of error-information may have
affected the development of this regulatory skill.
 The present study was not designed to address this issue. But there is one
finding that suggests that this effect may indeed have occurred. The error-
information in the manual always directs the users' attention to the screen to
check whether an error has occurred (hence the "if ... then" construction).
Observational data from the ERR-system revealed that users frequently con-
sulted the error-information for this purpose. More than 70% of the error-
information in the MM+ was used for monitoring. Subjects used it to check
the system state with the error-state in the error-information. Taking into
consideration that the error-information is not needed for task progression,
the high consultancy rate suggests that frequent monitoring is indeed
stimulated.
 The users' evolving understanding of the program might have important
implications for the design of error-information. When the users' knowledge
of the program increases, their need for error-information is likely to
decrease. That is, users will increasingly employ their own knowledge to
recover errors. As a result, error detection, diagnosis, and correction will
shift from an external to an internal level. From this, one might conclude
that the error-information in a manual should also adapt and, as with

 CHAPTER 6

114

constructive information, become increasingly less explicit. However, such
a fading technique may not work for error-information because of its
optional character. Users who do not make a mistake can skip it without
hampering their performance. Thus, some users may really need the full
information in the error-information late in the manual. How the content and
presentation of error-information can be accommodated to the users' chan-
ging needs should be the subject of future research.
 More broadly, it is important to expand the advantages of error-infor-
mation to different user groups. The present study focussed on the unex-
perienced computer users. Since this audience will become scarce in the
near future, it is interesting to speculate whether error-information can be
equally beneficial for experienced computer users who simply need to learn
another new program. A recent study showed that this might be the case.
Ex-perienced users have developed action routines that cause many errors
when inconsistent software is used (Prümer, Zapf, Brodbeck & Frese,
1992). In learning a new software package, error-information could thus
minimize negative transfer by preventing and supporting analogy errors.
 Yet another audience that might benefit from error-information is that of
casual users. This user group works with the software so infrequently that
they do not go through the regular training stages. In fact, they are not
interested in learning the program at all; they just want to use it to achieve a
personal goal (Brockmann, 1990). Due to their preferences, casual users
have a high propensity for error which, as with first-time users, can easily
lead them to abandon the program. Consequently, they have a need for a
safety net that guides them in their constructive actions and helps them to
get out of problems (Cuff, 1980). As was previously mentioned, the
software cannot take care of this need alone; error-information could
support casual users in achieving their goals.
 Another interesting issue concerns the applicability of the error design
principles for on-line documentation. Most principles regarding the content
and presentation of error-information can probably be easily applied. Only
the guidelines regarding its physical presentation need to be adjusted to the
new situation. In addition, due to the interactive nature of on-line documen-
tation, new possibilities for supporting users' errors arise. For example,
some types of error-information need not necessarily be imposed on the
user. Rather, the program could present it only when users request it to
check if an error has occurred. Thus, the program could assist users in
monitoring their behavior and support error detection (e.g., Bradford, 1990;
Dayton, Gettys & Unrein, 1989). In short, our principles for designing error-
information seem fit for designing on-line documentation. The effect of

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

115

error-information in on-line documentation on user behavior will have to be
investigated in the future.

References

Allwood, C.M. (1984). Error detection processes in statistical problem solving.

Cognitive Science, 8, 413 - 437.
Allwood, C.M. (1986). Novices on the computer: A review of the literature.

International Journal of Man-Machine Studies, 25, 633 - 658.
Allwood, C.M. & Eliasson, M. (1987). Analogy and other sources of difficulty in

novices' very first text-editing. International Journal of Man-Machine Studies, 27, 1
- 22.

Anderson, J.R. (1985). Cognitive psychology and its implications. San Francisco:
Freeman.

Arnold, B. & Roe, R. (1987). User-errors in human-computer interaction. In M. Frese, E.
Ulrich & W. Dzida (Eds.), Psychological issues of human computer interaction in
the workplace (pp. 203 - 220). Amsterdam: Elsevier.

Baber, R.L. (1991). Error-free software: Know-how and know-why of program cor-
rectness. Chichester: Wiley.

Booth, P.A. (1991). Errors and theory in human-computer interaction. Acta
Psychologica, 78, 69 - 96.

Bradford. J.H. (1990). Semantic strings: A new technique for detecting and correcting
user errors. International Journal of Man-Machine Studies, 33, 399 - 407.

Brockmann, R.J. (1990). Writing better computer user documentation: From paper to
hypertext. New York: Wiley.

Brown, J.S. (1983). Learning by doing revisited for electronic learning environments. In
M. A. White (Ed.), The future of electronic learning (pp. 13 - 33). Hillsdale:
Erlbaum.

Card, S.K., Moran, T.P. & Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale: Erlbaum.

Carroll, J.M. (1990). The Nürnberg Funnel: Designing minimalist instruction for
practical computer skill. Cambridge: MIT.

Carroll, J.M. & Carrithers, C. (1984). Blocking learner error states in a training-wheels
system. Human Factors, 26, 377 - 389.

Charney, D., Reder, L. & Kusbit, G.W. (1990). Goal setting and procedure selection in
acquiring computer skills: A comparison of tutorials, problem solving and learner
exploration. Cognition and Instruction, 7, 323 - 342.

Cuff, R.N. (1980). On casual users. International Journal of Man-Machine Studies, 12,
163 - 187.

Curry, R.E. (1981). A model of human fault detection for complex dynamic processes.
In J. Rasmussen & W.B. Rouse (Eds.), Human detection and diagnosis of system
failures (pp. 171 - 184). New York: Plenum Press.

Dayton, T., Gettys, C.F. & Unrein, J.T. (1989). Theoretical training and problem
detection in a computerized database retrieval task. International Journal of Man-
Machine Studies, 30, 619 - 637.

 CHAPTER 6

116

Douglas, S.A. & Moran, T.P. (1983). Learning text editor semantics by analogy. In A.
Janda (Ed.), Human factors in computing systems: Proceedings of the CHI'83
conference (pp. 207 - 211). Amsterdam: Elsevier.

Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem
solving. Review of Educational Research, 54, 363 - 407.

Frese, M., Albrecht, K., Altmann, A., Lang, J., Von Papstein, P., Peyerl, R., Prümper, J.,
Schulte-Göcking, H., Wankmüller, I. & Wendel, R. (1988). The effect of an active
development of the mental model in the training process: Experimental results in a
word processing system. Behaviour and Information Technology, 7, 295-304.

Frese, M. & Altmann, A. (1989). The treatment of errors in learning and training. In L.
Bainbridge & S. A. Ruiz Quintanilla (Eds.), Developing skills with information
technology (pp. 65 - 86). Chichester, Wiley.

Glaser, R. (1965). Toward a behavioral science base for instructional design. In R.
Glaser (Ed.), Teaching machines and programmed learning, vol. 2 (pp. 771 - 809).
Washington: AECT.

Graesser, A.C. & Murray, K. (1990). A question-answering methodology for exploring a
user's acquisition and knowledge of a computer environment. In S. P. Robertson, W.
Zachary & J. B. Black (Eds.), Cognition, computing and cooperation (pp. 237 -
267). Norwood: Ablex.

Hartley, J. (1985). Designing instructional text. London: Kogan Page.
Jelsma, O. & Bijlstra, J.P. (1990). Process: Program for research on operator control in

an experimental simulated setting. IEEE Transactions on Systems, Man, and Cyber-
netics, SMC-20, 1221 - 1228.

Lang, T., Lang, K. & Auld, R. (1981). A longitudinal study of computer-user behavior in
a batch environment. International Journal of Man-Machine Studies, 14, 251 - 268.

Lazonder, A.W. (1994). Minimalist documentation and the effective control of errors. In
M. Steehouder, C. Jansen, P. van der Poort & R. Verheijen (Eds.), Quality of
technical documentation (pp. 85 - 98). Amsterdam: Rodopi.

Lazonder, A.W. & Van der Meij, H. (1993). The minimal manual: Is less really more?
International Journal of Man-Machine Studies, 39, 729 - 752.

Lazonder, A.W. & Van der Meij, H. (1994). Effect of error-information in tutorial
documentation. Interacting with Computers, 6, 23 - 40.

Lewis, C. & Norman, D.A. (1986). Designing for error. In D. A. Norman & S. W.
Draper (Eds.), User centered system design: New perspectives on human-computer
interaction (pp. 411 - 432). Hillsdale: Erlbaum.

McCoy Carver, S., & Klahr, D. (1986). Assessing children's LOGO debugging skills
with a formal model. Journal of Educational Computing Research, 2, 487 - 525.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human-
Computer Interaction, 5, 381 - 413.

Mizokawa, D.T. & Levin, J. (1988). Standards for error messages in educational
software. Educational Technology, 28, 19 - 24.

Mory, E.H. (1992). The use of informational feedback in instruction: Implications for
future research. Educational Technology: Research and Development, 40, 5 - 20.

Norman, D.A. (1983). Design rules based on analyses of human error. Communications
of the ACM, 26, 254 - 258.

Norman, D.A. (1986). Cognitive engineering. In D.A. Norman & S.W. Draper (Eds.),
User centered system design: New perspectives on human-computer interaction (pp.

THE EFFECT OF ERROR-INFORMATION IN MINIMALIST DOCUMENTATION

117

31 - 61). Hillsdale: Erlbaum.
Pickthorne, B. (1983). Error factors: A missing link between cognitive science and

classroom practice. Instructional Science, 11, 281 - 312.
Prümer, J., Zapf, D., Brodbeck, F.C. & Frese, M. (1992). Some surprising differences

between novice and expert errors in computerized office work. Behaviour and
Information Technology, 11, 319 - 328.

Rasmussen, J. (1986). Information processing and human-machine interaction: An
approach to cognitive engineering. New York: Elsevier.

Raven, J.C. (Ed.), (1986). Standard progressive matrices and vocabulary scales.
London: Lewis

Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
Rizzo, A., Bagnara, S. & Visciola M. (1987). Human error detection processes. Inter-

national Journal of Man-Machine Studies, 27, 555 - 570.
Roush, R. (1992). Taking the error out of explaining error messages. Technical Com-

munication, 39, 56 - 59.
Van der Meij, H. & Carroll, J.M. (in press). Principles and heuristics for designing

minimalist instruction. Technical Communication.
Van der Meij, H. & Lazonder, A.W. (1993). An assessment of the minimalist approach

to computer user documentation. Interacting with Computers, 5, 355 - 370.
Wærn, Y. (1991). On the microstructure of learning a wordprocessor. Acta

Psychologica, 78, 287 - 304.
Wendel, R. & Frese, M. (1987). Developing exploratory strategies in training: The

general approach and a specific example for manual use. In H.J. Bullinger, B.
Schackel & K. Kornwachs (Eds.), Proceedings of the second IFIP conference on
human-computer interaction (pp. 943 - 948). Amsterdam: Elsevier.

118

CHAPTER 7

General discussion

7.1 Introduction

There is something paradoxically about looking back on a research project
like the one described. As Carroll (1993) pointed out: "It is unavoidably
unfair to look back in judgement on earlier work; what is obvious today is
obvious because earlier work advanced and clarified matters. Yet we must
look back if we want to understand where a field has been and where it
might be going." (p. 4).
 Prompted by this plea for reflection, this chapter reviews the research
project that was described in this thesis. As detailed discussions were
included at the end of each chapter, the present discussion is rather brief. Its
main objective is to give a broader perspective to the work that was
presented. The discussion therefore focuses on how the results of the ex-
periments compare to the work in other, related areas.
 The chapter starts with a discussion on the functionality of the
minimalist approach. In chapter 2 this approach was introduced as a
coherent set of design principles. In chapter 3 a minimal manual designed
according to these principles proved to lead to significantly higher learning
outcomes when compared to a state-of-the-art self-study manual. The
minimalist approach was therefore considered to be effective for teaching
basic computer skills. In section 2 of this chapter the generalizability of this
conclusion is viewed from a broader perspective. Among others, the
limitations of the minimalist approach to first-time user documentation are
discussed.
 The experiments in chapter 4 to 6 were designed to uncover whether
even a single minimalist principle might affect learning and performance.
The experiment discussed in chapter 6 presented the most salient results.
This study showed that the inclusion of error-information resulted in
superior corrective knowledge and skills of users, without obstructing their
constructive skills development. Alternative approaches to error-based
learning are presented and discussed in section 3.
 The chapter closes with a discussion on manual design in general and
minimal manual design in particular. So far, this thesis has paid little
attention to the way in which minimalist instruction is designed. Although
several principles and heuristics for design were identified, the overall
methodology for designing minimalist instruction has largely been passed

 CHAPTER 7

120

over. In the field of instructional design, this issue has gained importance,
especially since researchers have discovered a discrepancy between how
design is represented in prescriptive models and how it is actually carried
out in practice (e.g., Pieters & Bergman, 1993; Tripp & Bichelmeyer, 1990).
Based on these new insights and on the experiences from designing the
WordPerfect manuals, the processes involved in designing minimalist
instruction were identified. They are discussed in section 4.

7.2 Investigating minimalist tutorials

In chapter 2 the minimalist approach was introduced as a new design theory
for designing tutorial documentation. The experiment reported in chapter 3
bore this out. Similar to Carroll's original study (Carroll, Smith-Kerker,
Ford, Mazur-Rimetz, 1987), significant and considerable gains of a minimal
manual over a state-of-the art self-study manual were found. Prompted by
these findings, the use of a minimal manual was considered a preferred
solution to the problem of teaching basic computer skills to novice users. In
this section, some questions concerning the generalizability of this
conclusion are addressed.
 Firstly, the subjects in the experiment presented in chapter 3 were
university students, a very homogeneous group of highly educated,
intelligent young adults. Clearly, these students are not a representative
sample of the population of adult computer novices. As a result, one may
wonder whether the findings obtained in the experiment described here also
apply to the broader population of adult users.
 There is some evidence that this indeed is the case. There is, first, the
original study of Carroll et al. (1987) in which the subjects were secretaries.
In addition, Carroll mentions positive effects with various audiences in his
book The Nürnberg Funnel (Carroll, 1990). Moreover, in a study using
exactly the same manuals as in the experiment in chapter 3, nearly the same
considerable, positive results were found for a substantially more
heterogeneous sample of subjects (Van der Meij & Lazonder, 1993; see also
Van der Meij, 1992). In that study the subjects were adult volunteers aged
between 17 and 63 with a highly variable educational background; the
sample included two subjects with a university degree but also a number of
subjects that had not completed secondary school.
 The second question relates to the software. The experiments in this
thesis used the menu-driven version of WordPerfect 5.1. This choice for a
word processor was prompted by the fact that the purpose of the first study
was to replicate Carroll's study. The choice for WordPerfect was inspired by

GENERAL DISCUSSION

121

the high popularity of this package in the Netherlands. Using the menu-
driven version of WordPerfect helped expel the skepticism regarding the
functionality of the minimalist approach for screen-based programs. What
remains in question is whether minimal manuals are equally beneficial for
users who must learn to use more complex computer programs or computer
equipment.
 A review of the literature indicates that, among others, minimalist
tutorials have been developed for learning to use a faxmodem (Scholtz &
Hansen, 1933), HyperCard (Anderson, Knussen & Kibby, 1993), Smalltalk
(Rosson, Carroll & Bellamy, 1990), a computer-aided design (CAD) system
(Vanderlinden, Cocklin & McKita, 1988), an interface construction toolkit
(Vanasse, 1994), and a safety application for predicting physical stress
(Gong & Elkerton, 1990). Nearly all of these studies report considerable
advances of the minimal manual over a state-of-the-art self-study manual. In
short, they support the notion that the minimalist approach can be effective
in domains other than word processing.
 On the other hand, these studies do not address the question how
minimalism compares to other instructional methods for teaching (basic)
computer tasks. Nor does the experiment described in chapter 3. All of these
studies contrasted a minimal manual with a state-of-the-art tutorial. The
minimalist approach was not compared to other paper instructions such as
the Leittext method (Teurlings, 1993) or the information mapping approach
(Horn, 1989, see also Steehouder, 1990). Moreover, as the medium of
instruction tends to shift to computerized support, a comparison of a
minimal manual with, for example, an on-line tutorial might be informative.
 In addition to expanding the minimalist approach, it is equally important
to come to an understanding of why the minimalist approach is successful.
Carroll has introduced minimalism as a set of design principles and
heuristics that were shown to be effective when used in combination. The
question is whether these principles will also work in isolation. Does each
principle have a unique contribution to the manual's effect? Or is it just a
fine-tuning of all principles and heuristics together? If the latter is true, this
will severely limit the usefulness of minimalism, as one must opt for using
all principles and heuristics. Clearly, the idea is that the four major
principles can have a unique effect. There is also some research to support
this.
 For example, Black, Carroll and McGuigan (1987) investigated the
effect of 'slashing the verbiage', a feature previously classified as one of the
design principles that facilitates text optimization (see Table 2.1). Their
study revealed a positive correlation between manual length and time.
Subjects who were given less to read were significantly faster during

 CHAPTER 7

122

practice and needed significantly less time to complete test exercises.
 Another study in which distinct minimalist principles were examined
was conducted by Gong and Elkerton (1990) who manipulated task
orientation, 'slashing the verbiage', and support of error-recovery. Contrary
to Black et al. (1987), they found no effect of shortening the manual on
practice time. However, it did cause a significant decrease of the number of
errors during practice. Their study further revealed that the manual's task-
oriented nature affected practice time, whereas error-information
significantly reduced both the number of errors during practice and the time
to complete transfer tasks.
 The experiments reported in this thesis further support the idea that the
inclusion of error-information significantly enhances the effects of the
minimal manual. Strictly speaking, it then remains to be shown whether
error-information might also help improve a standard self-study manual, but
this is a moot issue in view of the proven superiority of the minimal manual.
The overall impression from the studies on minimalism thus supports the
idea that each minimalist principle contributes to the manual's positive
overall effect on learning and performance. It is therefore probably correct
to conclude that the effect of these principles is not merely a synergistic
one.

7.3 Error-based learning

The key assumption of the work presented in the chapters 4 to 6 was that
errors can help people learn to operate a computer program if these errors
are controlled in the learning process. The demands for such effective error
control were identified in chapter 4, whereas the practical conditions for
learning from errors were described in chapter 5. This was substantiated in
the experiment presented in chapter 6. This study showed that subjects who
used a manual that contained error-information required significantly less
time to complete practice because they made fewer errors and were faster
and better at recovering errors. After practice they were better at diagnosing
and correcting errors.
 In this section, other approaches to error-based learning are considered
as alternatives to the approach presented in the experiments. These
approaches can roughly be classified as instruction-driven or software-
driven. Instances of both modes are discussed in view of their efficacy in
controlling errors and their capacity to allow people to learn from errors.
 A typical example of an instruction-driven approach is Frese's error
management (Frese & Altmann, 1989; Frese et al., 1991). Error

GENERAL DISCUSSION

123

management departs from the idea that users should learn when errors are
likely to occur and how to deal with them effectively. According to Frese,
this can be accomplished by including an explicit error training in the
manual. Such error training involves presenting some kind of error and
asking the learner to recover it. Error training is best given in the middle of
the instruction; when offered at the beginning of the learning process it is
assumed to cause information overload.
 Although the error management method seems rather straightforward,
error training can take many different forms. Frese described the possibility
of the following strategies: (a) explicitly describe potential errors and their
correction methods in the manual; (b) ask one learner to get out of the errors
of a second learner; (c) reproduce error states on paper and ask learners to
describe how the error has come about and how it can be corrected; (d) let
the learners perform extremely complex tasks, and ask them to try to get out
of the errors that are bound to appear.
 Another instruction-driven approach to error-based learning can be found
in the Leittext method. Leittext is an individualized training method that
was first developed in the field of technical training in Germany. Teurlings
(1993) successfully applied this method in learning to use a word processor.
The basic idea behind the Leittext method is that learners individually
perform a realistic task or assignment (e.g., typing out a text, styling a text,
creating a text) under support of didactic aids. For example, learners may be
given regulation questions, checklists, and technical instructions that
structure the learning process according to the following six phases:
informing, planning, deciding, executing, checking, and evaluating.
 Learning from errors takes place in the last two phases. Firstly, learners
are prompted to self-check their performance. They must consider their
learning outcomes and reflect on the method they have applied. This self-
check is assumed to enable learners to detect errors and identify their
possible cause(s). Secondly, the trainer evaluates the learning process and
learning outcomes. Among others, the trainer discusses how the errors can
be prevented in future.
 Although the error management and Leittext method pay considerable
attention to corrective skills development, there is at least one major draw-
back: they do not control users' errors during learning. Frese's error
management approach is similar to one in which a distinct chapter in the
manual is devoted to dealing with errors. This basically comes down to
considering error-recovery as a distinct task users have to learn, similar to,
for example, retrieving a document or changing the typeface. In the Leittext
method, errors are considered at the end of the learning process. Users are
not supported in detecting, diagnosing, and correcting errors during task

 CHAPTER 7

124

execution. Learning from errors is therefore mainly directed at preventing
errors in future task execution.
 In contrast, software-driven approaches to error-based learning typically
focus on error control by blocking the users' errors during (the first few
hours of) learning. A typical example of this kind of error prevention can be
found in training-wheels technology (Carroll & Carrithers, 1984; Carroll &
Kay, 1985). In a training-wheels system, advanced functions of a program
are disabled, and so are some of the options where mistakes may severely
hamper task continuity. When users do select disabled commands, a
message informs them that that particular command is unavailable and task
execution can continue without any corrective action.
 Carroll and Carrithers (1984) experimentally compared a training-wheels
system to a complete system. Overall, they found that subjects who used the
training-wheels system were faster and more successful. Training-wheels
subjects needed less time to complete training, made significantly fewer
errors, and were significantly faster at error-recovery. Despite these positive
findings, one should keep in mind that the training-wheels system was not
designed to reduce the number of errors per se. In fact, users could still
make an excessive amount of errors. The main advantage of the system is
that it extenuates the consequences of (some) errors, which, in turn, makes it
more trackable for users to detect and correct the 'unblocked' errors.
 A more advanced version of a training-wheels system is reported in
Biemans and Simons (1992). In their system, a concurrent instructional shell
was built around a word processor. This shell monitored subjects' perfor-
mance during learning and provided feedback. In case of a correct solution,
the subjects actions were carried out and the message "OK" appeared. When
the subjects' input was incorrect, their actions were blocked and they were
given feedback. Unfortunately, this training-wheels system was used to
study the effect of self-regulation activities. Consequently, no information
was gathered with regard to its capacity to control errors or to allow for
error-based learning (Biemans, personal communication).
 While these training-wheels systems control errors during learning, and
probably to a higher degree than is accomplished with error-information in a
manual, they seem limited in their capacity to exploit errors. By blocking
errors and their consequences, users cannot fully capitalize on their effects
and learning from them is restricted. Little attention is given to corrective
skills development, a shortcoming that is likely to reveal itself after practice.
When users make an error that was blocked during practice, they are not
trained at either recognizing the error-state (i.e., detecting the error) or
getting out of it (i.e., correcting the error).
 In short, the instruction-driven and the software-driven approach mainly

GENERAL DISCUSSION

125

support one aspect involved in error-based learning. The instruction-driven
approach facilitates corrective skills development but fails to control errors
during learning, whereas the software-driven approach controls errors but
offers users no opportunity to learn from them. Therefore, both approaches
would complement each other well, at least in theory. In practice, their
combination will inevitably lead to a deadlock.
 It is interesting to note that one of the ways in which the two approaches
are 'balanced' occurs when manuals contain both safety-information and
error-information. The safety-information (i.e., dangers, warnings and
cautions) resembles a training-wheels system in that it intends to prevent
users to make errors. As such it seeks to control errors. Like in the training-
wheels technology, safety-information is presented only in situations where
errors are costly. That is, when errors involve a risk to the product or the
person (e.g., Klauke, 1994; Venema, 1990).

7.4 Designing minimalist instruction12

Over the past decade, the number of handbooks on manual design has
grown considerably (e.g., Brockmann, 1990; Cohen & Cunningham, 1984;
Grimm, 1987; Hendrix & Van der Spek, 1993; Weiss, 1991). In each of
these books, the development process is described on the basis of a
systematic design model. Roughly speaking, these models contain five main
activities, each of which is to be carried out after completing the previous
one. These five activities are: (a) analyze the context, audience, and content;
b) design the manual; (c) develop the manual; (d) evaluate and revise the
manual; and (e) implement the revised manual.
 Such models represent the activities involved in developing tutorial
documentation in a fixed, linear order. This is not to say, however, that such
a linear portrayal of steps and activities is typical of the way in which
manuals are actually designed. In fact, it is generally acknowledged that
(most) design efforts progress in repeated iterative cycles rather than in one
single sweep carried out in a linear fashion (e.g., Banathy, 1987; Gayeski,
1991b; Pieters, 1992; Rowland, 1992). It might therefore be appropriate to
represent the design process in more detail, that is, by taking its cyclic
nature into account.
 By prescribing explicit guidelines for each of these phases, linear models
further suggest that design merely comes down to applying well-tried

12 to appear in Van der Meij, H., & Lazonder, A.W. (in press). Het ontwerpen van ‘minimal
manuals’ [Designing minimal manuals]. Tijdschrift voor Taalbeheersing, 16(3)

 CHAPTER 7

126

Figure 7.1
Minimalist design process

solutions. In this respect, the representation of the design process requires
some differentiation as well. In addition to performing 'trusty' techniques
like task analysis, needs assessment, and stating the objectives, design
always involves a certain level of creativity. That is, it involves a constant
balancing between approved ideas and new, original input or expressions
that arise from the need to optimally adjust the manual to the features of the
program, the task domain, and the target population.
 In short, there seems to be a discrepancy between how design is
represented in models and how it is carried out in practice. In describing the
process of designing minimal manuals, an attempt is made to provide a
more genuine description of the design process (henceforth referred to as
the minimalist design process). The core activities of this process can be
summarized as shown in Figure 7.1. As this figure indicates, the steps
involved in the minimalist design process progress in iterative, recurrent
cycles that are especially noticeable in the design phase. They are detailed
below.

7.4.1 ANALYSIS

The first step in designing a minimal manual involves analyzing the com-
ponents of the instructional setting. In this respect, the minimalist design

ANALYSIS

PRODUCTION

DESIGN

BY KNOWING
Activity
Create or revise the manual
Means
Designer’s knowledge base

BY THINKING
Activity
Reflect on user tests
Means
Reasoning, inferencing

BY DOING
Activity
Test the manual
Means
User tests, observations

GENERAL DISCUSSION

127

process progresses in line with linear design models: it starts with an
analysis of the software, of the relevant knowledge, skills, and idiosyncratic
features of the intended audience and of the context, leading to a tentative
statement of objectives. There are, however, two striking differences that
relate to the way in which these analyses are carried out.
 The first difference is that the designers focus on how the user interacts
with the program, going slightly beyond a task-oriented approach and
certainly way beyond a software-oriented analysis. In most systematic
design models the nature of the learning outcomes tends to dictate the
design process. In designing minimal manuals, the instruction is 'written
around' the user. This act of user centeredness causes a shift in the central
activity of the analysis phase from a pure subject-matter analysis to an
analysis of how the target audience relates to the software. As a
consequence, designers cannot suffice by giving a mere description of the
users' demographic features. Instead, they should look for detailed
information or make assumptions on the users' information needs, learning
preferences, computer skills, and domain knowledge in relation to the
program at hand.
 The second difference relates to the analysis of the software. In the
minimalist design process, task analysis is more comprehensive. As in linear
design models, a fine-grained, top-down analysis of the actions required to
operate the program is performed to identify the constructive skills the
learner should get to know. But, given the fact that minimalist instruction
supports error-recovery, this analysis is complemented with one of
corrective skills. That is, the most prevalent errors are identified and so are
the actions to recover them.

7.4.2 DESIGN

During design, three steps are carried out iteratively. In that respect,
minimalist design resembles a recent design methodology called rapid
prototyping (e.g., Gayeski, 1991a; Tripp & Bichelmeyer, 1990). According
to this methodology, research and development should be conducted as
concurrent processes, leading to prototypes, which are then tested, and
which may or may not evolve into a final product. The rationale for this
approach is that full understanding of needs, content, and objectives tends
more often to be a result of the design process rather than an input to it.
 Its flexible nature makes rapid prototyping appropriate to describe the
minimalist design process. As users' actions can never be fully anticipated,
the designer repeatedly alternates constructive acts of design with practical
user tests. In performing these tests, a salient difference between rapid

 CHAPTER 7

128

prototyping and the minimimalist design process appears. In rapid proto-
typing − as well as in linear design models − user tests are conducted with a
protoype of the instruction. In the minimalist design process, the 'minimal'
size of the manual allows for users tests with a complete version of the
manual.
 These iterative cycles of the minimalist design process are illustrated
below. In using the same labels that were applied to classify the activities of
users, the prevailing activities of designers can be characterized as design
by knowing, by doing, and by thinking.

Designing by knowing
Each iterative design cycle starts with designing by knowing. Expert desig-
ners often use their rich body of knowledge as their starting point for design
(Banathy, 1987; Gayeski, 1991b; Rowland, 1992; Schön, 1983). They
integrate their general knowledge (i.e., notions from scientific disciplines
like psychology, learning theory, or technical writing) and specific
knowledge (i.e., information from the analysis phase) to construct a first
draft of the manual.
 An instance of designing by knowing can be found in the styling of the
different types of information in a manual (see section 2.4.4). The designer
knows that a minimal manual should contain at least four different types of
information: action information, background information, error-information,
and linkage information. The designer also knows that different information
types should be presented differently. Graphically speaking, there are
numerous options to differ between information types. However, reading
research shows that italics are read slightly more slowly than a roman type-
face (e.g. Hartley, 1985). Other studies indicate that readers perceive
numbers as a representation of a sequence (e.g., Feinberg, 1989). In
designing by knowing, these facts are integrated: the designer decides to
number the action information and to put the error-information in italics.
 Another example of designing by knowing relates to how the position of
keys on the keyboard should be explained. From experience (or from
observing users during the analysis phase) the designer knows that novices
often have some trouble identifying and locating special keys, such as F1,
ENTER, DELETE, and BACKSPACE. Therefore, the manual has to support
users in finding these keys. Given the fact that the WordPerfect manual was
designed for internal use only (i.e., for one type of keyboard), the position
of keys could easily be identified by highlighting the relevant keys on the
keyboard through illustrations in the manual. Following from the design
principle to encourage exploration and problem solving (see section 2.3.1),
displaying only the 'looks' of each key and omitting information about its

GENERAL DISCUSSION

129

location was considered preferable because it would encourage users to
actively search for that key. This, in turn would help them to more fully
understand the structure of the keyboard.

Designing by doing
The second step in the design phase is designing by doing. In designing by
doing, provisional versions of the manual are subjected to pilot tests during
which the designer records the users' actions. These user tests reveal the
strengths and weaknesses of the manual and suggest points for revision.
Designing by doing is a crucial step in the design process because what
once worked well in one situation may very well be dysfunctional under
different circumstances. Moreover, users tend to show unanticipated
behaviors, which, if not adapted to, can turn an otherwise well-written
manual into an unfit or incomprehensible set of directions.
 Designing by doing is, among others, necessary to achieve text op-
timization. Comprehensible text cannot be designed without extensive pilot
testing. With some basic knowledge of the target audience, the designer can
start with weeding out all the excess and replacing jargon (when rewriting a
manual) or with writing a simple first draft (when designing from scratch).
After that, user tests are needed to find the right balance between presenting
(additional) information users need to work with the program and deleting
information the users already know or can infer.
 The need for designing by doing is also revealed by the provision of
error-information. Error-information should be given when errors block task
progression. That is, when actions are error-prone or when errors are
difficult to correct. Experienced designers can anticipate when such
situations arise (Van der Meij & Carroll, in press). Notwithstanding their
knack to locate the 'hot spots' in a manual, user tests remain indispensable.
Observing users and tracking their errors helps better assess their needs for
support in dealing with errors. More specifically, the designer can better
identify the right content and presentation of error-information. For
example, in the first experiment on error-information, the need for repeated,
full presentation of error-information was underestimated. User tests
revealed this shortcoming, and so, in a subsequent manual error-information
was always given when mistakes were expected, regardless of the users'
possible prior knowledge for correction (i.e., no gradual fading).

Designing by thinking
Designing minimalist instruction comes down to more than just knowing or
doing things. It also involves designing by thinking. Practitioners reason
about their design, they reflect and make inferences and generalizations (cf.

 CHAPTER 7

130

Schön, 1983). Such activities are indispensable in view of the above-men-
tioned fact that designing often implies more than rigidly following ready-
to-apply prescriptions. As environments, programs and audiences vary,
there will always be a need for alternative ways to implement a design
principle, to incorporate new ideas, or to not follow some of the heuristics
(Van der Meij & Carroll, in press).
 A typical example of designing by thinking appears when designers
interpret the outcomes of user tests. Test outcomes only suggest local
optimizations of the manual. That is, they 'merely' show where additional
error-information is needed, what metaphors are dysfunctional, or which
chapters are too long to work through. Only reflection or thought can reveal
the underlying principles behind these problems, making it possible to
transfer their solution to other parts of the manual. For example, if tests
indicate that most users end the search mode by pressing the ENTER key, the
designer may infer that this is due to the fact that users have automized this
routine. The designer may then infer that additional support may be needed
every time a command is ended unconventionally, even though the tested
users did not show these problems.
 Mindlessly applying known design principles can also be dysfunctional.
Design is creative, abidingly seeking ways to optimally adjust the
instruction to the users' knowledge, skills, needs, and preferences. Thus, it
constantly forces designers to develop new ideas or to reconsider certain
design principles. This is nicely illustrated in a recent design project in
which a minimal manual for an advanced laser robot was to be created
(Laret, 1993). Given the inherent dangers of inviting users to explore some
options of the laser robot, users were not stimulated to strike out on their
own. The risk of working with a laser beam also prompted the designer to
incorporate another type of information that is uncommon in most software
manuals, namely warnings.

After the third step, some additional analyses may take place, the design
cycle may start again, or production may begin. When a new cycle starts,
the insights that were revealed in the previous design cycle(s) are part of the
specific knowledge base of the designer. After designing the next version of
the manual, user tests are conducted and the outcomes of these tests are
reflected upon. The iterative design cycles end when user tests signal that
the quality of the manual is satisfactory. In that case, the final phase of the
design process starts: the production of the manual.

GENERAL DISCUSSION

131

7.4.3 PRODUCTION

With commercially developed documentation, the actual production of the
manual is preceded by a series of 'pre-press' activities like proofreading,
finishing the rough illustrations, and preparing the final DTP-version of the
manual. As these activities were not performed as part of the present
research project, they will not be discussed here. An elaborate description of
the production phase can be found in Brockmann (1990), Pakin (1984),
Sullivan (1988), and Wright (1988).

7.5 Epilogue

In working on this research project, I sometimes wondered whether
scientific findings are actually used in practice. This question seemed
relevant, espe-cially since research into computer user documentation is
considered to be applied research. In addition to increasing scientific
understanding and gratifying the researcher's personal curiosity, its goal is
to provide designers with empirically verified principles and heuristics on
creating better manuals.
 A glance at the past proves that this concern is not entirely unfounded.
Document design has its origins in the 1930s. Since then, thousands of
pages have been written on manual design. Practitioners admit to agree on
these notions, but, ironically, incomprehensible manuals have long been the
rule rather than the exception.
 Fortunately, things have started to change. As Schriver (1989) pointed
out, manual design is yet an emerging discipline and much of its develop-
ment in theory, research, and practice has occurred in the past 10 years. In
my view, it is vitally important that this development continues. The use and
complexity of software and computer equipment is growing steadily these
days, and the need for good user manuals is likely to increase accordingly.
Clearly, this need cannot be met through design that is based on intuition or
trial-and-error. Rather, as the minimalist design process indicated, design
should be iterative, abidingly seeking ways to integrate empirical findings
into the design work. If design is performed in this way, I am convinced that
the infamous saying "if all else fails, read the manual" will belong to the
past before the next century.

References

Anderson, A., Knussen, C.L., & Kibby, M.R. (1993). Teaching teachers to use Hyper-

 CHAPTER 7

132

Card: A minimal manual approach. British Journal of Educational Technology, 24,
92 - 101.

Banathy, B.H. (1987). Instructional systems design. In R.M. Gagné (Ed.), Instructional
technology: Foundations (pp. 85 - 112). Hillsdale: Erlbaum.

Biemans, H.J.A., & Simons, P.R.J. (1992). Learning to use a word processor with
concurrent computer-assisted instruction. Learning and Instruction, 2, 321 - 338.

Black, J.B., Carroll, J.M., & McGuigan, S.M. (1987). What kind of minimal instruction
manual is the most effective? In H.J. Bullinger, B. Shackel & K. Kornwachs (Eds.),
Proceedings of the second IFIP conference on human-computer interaction (pp. 159
- 162). Amsterdam: Elsevier.

Brockmann, R.J. (1990). Writing better computer user documentation: From paper to
hypertext (2nd. edition). New York: Wiley.

Carroll, J.M. (1990). The Nürnberg Funnel: Designing minimalist instruction for
practical computer skill. Cambrigde: MIT.

Carroll, J.M. (1993). Creating a design science of human-computer interaction. Interac-
ting with Computers, 5, 3 - 12.

Carroll, J.M., & Carrithers, C. (1984). Blocking learner error states in a training-wheels
system. Human Factors, 26, 377 - 389.

Carroll, J.M., & Kay, D.S. (1985). Prompting, feedback and error correction in the
design of a scenario machine. Proceedings of the CHI'85 Conference on Human
Factors in Computing Systems (pp. 149 - 154). San Francisco: ACM.

Carroll, J.M., Smith-Kerker, P.L., Ford, J.R., & Mazur-Rimetz, S.A. (1987). The
minimal manual. Human-Computer Interaction, 3, 123 - 153.

Cohen, G., & Cunningham, D.H. (1984). Creating technical manuals: A step-by-step
approach. New York: McGraw-Hill.

Feinberg, S. (1989). Components of technical writing. New York: Holt, Rinehart &
Winston.

Frese, M., & Altmann, A. (1989). The treatment of errors in learning and training. In L.
Bainbridge & S.A. Ruiz Quintanilla (Eds.), Developing skills with information
technology (pp. 65 - 86). Chichester: Wiley.

Frese, M., Brodbeck, F., Heinbokel, T., Mooser, C., Schleiffenbaum, E., & Thieman, P.
(1991). Errors in training computer skills: On the positive function of errors. Human-
Computer Interaction, 6, 77 - 93.

Gayeski, D.M. (1991a). Rapid prototyping: A new model for developing multimedia.
Multimedia Review, 2(3), 18 - 23.

Gayeski, D.M. (1991b). Software tools for empowering instructional developers. Perfor-
mance Improvement Quarterly, 4(4), 21 - 36.

Gong, R., & Elkerton, J. (1990). Designing minimal documentation using a GOMS
model: A usability evaluation of an engineering approach. In J. Carrasco Chew & J.
Whiteside (Eds.), Proceedings of the CHI'90 conference (pp. 99 - 106). New York:
ACM.

Grimm, S.J. (1987). How to write computer documentation for users (2nd. edition). New
York: Van Nostrand Reinhold.

Hartley, J. (1985). Designing instructional text. London: Kogan Page.
Hendrix, W., & Van der Spek, E. (1993). Gids voor het schrijven van software

handleidingen [Guide for writing software manuals]. Groningen: Martinus Nijhoff.
Horn, R.E. (1989). Mapping hypertext: The analysis, organisation, and display of

GENERAL DISCUSSION

133

knowledge for the next generation of on-line text and graphics. Lexington: The
Lexington Institute.

Klauke, M. (1994). National standards: Their impact on text production and quality. In
M. Steehouder, C. Jansen, P. van der Poort & R. Verheijen (Eds.), Quality of
technical documentation (pp. 161 - 170). Amsterdam: Rodopi.

Laret, C. (1993). Ontwerp en constructie van een handleiding voor een technische robot
[Design an development of a manual for an industrial robot]. Unpublished master's
thesis, University of Twente, Enschede, The Netherlands.

Pakin, S.A. (1984). Document development methodology. Englewood Cliffs: Prentice
Hall.

Pieters, J.M. (1992). Het ongekende talent: Over het ontwerpen van artefacten in de
instructietechnologie [The unprecedented talent: On designing artefacts in instruc-
tional technology]. Enschede: University of Twente.

Pieters, J.M., & Bergman, R. (1993). The empirical basis of designing instruction: What
practice can contribute to theory. Unpublished manuscript, University of Twente,
Department of Instructional Technology.

Rosson, M.B., Carroll, J.M., & Bellamy, R.K.E. (1990). Smalltalk scaffolding: A case
study of minimalist instruction. Proceedings of the CHI'90 Conference on Human
Factors in Computer Systems (pp. 423 - 429). New York: ACM.

Rowland, G. (1992). What do instructional designers actually do? An investigation of
expert practice. Performance Improvement Quarterly, 5(2), 65 - 86.

Scholtz, J., & Hansen, M. (1993). Usability testing a minimal manual for the Intel
SatisFAXtion faxmodem. IEEE Transactions on Professional Communication, 36,
7 - 11.

Schön, D.A. (1983). The reflective practitioner: How professionals think in action. New
York: Basic Books.

Schriver, K.A. (1989). Document design from 1980 to 1989: The challenges that remain.
Technical Communication, 36, 316 - 331.

Steehouder, M.F. (1990). Gids voor het schrijven van computerhandleidingen [Guide
for writing computer documentation] (4th. edition). Enschede: Universiteit Twente,
Vakgroep Toegepaste Taalkunde.

Sullivan, P. (1988). Writers as total desktop publishers: Developing a conceptual
approach to training. In E. Barrett (Ed.), Text, context, and hypertest (p.. 265 - 278).
Cambridge: MIT.

Teurlings, C.C.J. (1993). Leren tekstverwerken: Een nieuw perspectief [Learning to use
a word processor: A new perspective]. Ph.D. thesis, Katholieke Universiteit Brabant,
Tilburg, The Netherlands.

Tripp, S.D., & Bichelmeyer, B. (1990). Rapid prototyping: An alternative instructional
design strategy. Educational Technology: Research and Development, 38(1), 31 -
44.

Vanasse, S. (1994). Minimal manual and on-line examples for learning how to use
interface construction toolkits. Performance Improvement Quarterly, 7(1), 80 - 96.

Vanderlinden, G., Cocklin, T.G., McKita, M. (1988). Testing and developing minimalist
tutorials: A case history. Proceedings of the 35th International Technical Com-
munications Conference, 196 - 199.

Van der Meij, H. (1992). A critical assessment of the minimalist approach to documen-

 CHAPTER 7

134

tation. SIGDOC'92 conference proceedings (pp. 7 - 17). New York: ACM.
Van der Meij, H., & Carroll, J.M. (in press). Principles and heuristics for designing

minimalist instruction. Technical Communication.
Van der Meij, H., & Lazonder, A.W. (1993). Assessment of the minimalist approach to

computer user documentation. Interacting with Computers, 5, 355 - 370.
Venema, A. (1990). Produktinformatie ter preventie van ongevallen in de privésfeer:

Gevaars- en veiligheidsinformatie in handleidingen van gebruiksprodukten
[Product-information to prevent domestic accidents: Safety-information in user
manuals]. Leiden: Stichting Wetenschappelijk Onderzoek
Konsumentenaangelegenheden (SWOKA).

Weiss, E.H. (1991). How to write usable user documentation (2nd. edition). Phoenix:
Oryx Press.

Wright, P. (1988). Issues of content and presentation in document design. In M.
Helander (Ed.), Handbook of human-computer interaction (pp. 629 - 647).
Amsterdam: Elsevier.

136

 137

DUTCH SUMMARY

Nederlandse samenvatting

1. Inleiding

De computer is zo langzamerhand niet meer uit onze samenleving weg te
denken. Dit komt voor een groot deel door de populariteit en het veelvuldig
gebruik van tekstverwerkers. Tekstverwerken is voor veel volwassenen een
belangrijke, zo niet de belangrijkste vorm van computergebruik. Bovendien is
een tekstverwerker voor veel mensen hun eerste, en vaak enige kennismaking
met de computer. Sterker nog, voor veel mensen is de tekstverwerker de
computer.
 Helaas verhult het schijnbare gemak waarmee ervaren computergebruikers
met een tekstverwerker omgaan vaak de moeilijkheden die gepaard zijn
gegaan met het leren omgaan met zo'n programma. Leren tekstverwerken lijkt
daardoor gemakkelijker dan het is. Althans, op het eerste gezicht. Ondanks het
feit dat de huidige generatie tekstverwerkers duidelijk verbeterd is ten
opzichte van de vroegere line-editors ervaren beginnende computergebruikers
nog steeds talloze problemen.
 Een aantal van deze problemen wordt veroorzaakt door de software. Voor
beginnende gebruikers is een tekstverwerker niet bepaald het meest gebruiker-
svriendelijke programma. In veel gevallen geeft wat op het beeldscherm
verschijnt een slecht beeld van wat je als gebruiker met het programma kunt
doen. Ditzelfde geldt ten aanzien van de commando's. Zeker voor beginnende
gebruikers zijn de namen van commando's soms net een cryptogram en
worden de resultaten van die commando's al even raadselachtig op het scherm
weergegeven.
 De handleiding die bij de computer of de software geleverd wordt biedt
zelden een kant-en-klare oplossing voor deze problemen. Integendeel, de
handleiding zelf veroorzaakt − ironisch genoeg − ook vaak de nodige
problemen. Deze problemen ontstaan doordat handleidingen onvoldoende
aansluiten bij de wensen, behoeften en leerstijlen van beginnende gebruikers.
Zo bevatten deze handleidingen bijvoorbeeld te veel uitleg en te weinig
oefeningen. Verder wordt aangenomen dat de gebruiker de handleiding altijd
van A tot Z doorwerkt, de voorgeschreven acties stap-voor-stap uitvoert en
steeds foutloos handelt.
 In dit proefschrift wordt een oplossing gezocht voor de problemen die
beginnende computergebruikers met de handleiding hebben. Onderzocht
wordt welke instructie-ontwerp principes moeten worden toegepast in een

 DUTCH SUMMARY

138

(les)handleiding voor beginnende computergebruikers. Anders gezegd: aan
welke eisen moet een handleiding voor het leren tekstverwerken voldoen. Bij
de beantwoording van deze onderzoeksvraag wordt uitgegaan van een theorie
die bekend staat als minimalisme. Het minimalisme is een recente benadering,
speciaal bedoeld voor het voor het ontwerpen van zelfinstructie materialen
voor het leren werken met computer programmatuur.

2. De minimale handleiding

In het begin van de jaren tachtig ontwikkelden John Carroll en zijn collega's
bij IBM de minimalistische benadering voor het ontwerpen van computer-
handleidingen. Op basis van uitgebreide observaties van beginnende com-
putergebruikers kreeg deze benadering gestalte in de minimal manual. Deze
minimale handleiding onderscheidde zich van conventionele handleidingen
doordat zij gebruikers meer vrijheid gaf om naar eigen inzicht te handelen.
Het 'minimale' karakter van deze handleiding blijkt uit de inhoud: zij bevat
bondige uitleg en geeft gebruikers steeds de gelegenheid om aan
betekenisvolle taken te werken.
 Een minimale handleiding wordt gedefinieerd door vier minimalistische
principes: (1) actiegerichtheid, (2) optimaal gebruik van tekst, (3)
ondersteuning van fouten, en (4) modulariteit.

2.1 ACTIEGERICHTHEID
Een minimale handleiding is actiegericht; zij stelt de gebruikers in staat
vrijwel direct aan betekenisvolle taken te werken. Er wordt vrijwel geen
aandacht besteed aan onderwerpen als het installeren van het programma of
het veranderen van de standaardinstellingen. Ook wordt weinig uitleg gegeven
over bijvoorbeeld de werking van rolmenu's of speciale toetsen. In plaats
daarvan ondersteunt de minimale handleiding bekende en voor de gebruikers
relevante taken zoals het typen van een uitnodiging voor een feest, het
vormgeven van een brief aan de PTT of het corrigeren van de notulen van een
ledenvergadering.
 De actiegerichtheid komt ook tot uitdrukking in de hoofdstuk- en
paragraaftitels. Deze geven altijd aan wat een gebruiker met het programma
kan doen (bijvoorbeeld "Typen", "Een tekst bewaren", of "De kantlijn
verschuiven"). Dit in tegenstelling tot kopjes als "Van en naar DOS" en
"Diverse handige hulpmiddelen". Er zal best wat belangrijks in deze secties
staan, maar de kopjes maken niet op voorhand duidelijk welke acties zij
bevatten.

NEDERLANDSE SAMENVATTING

139

 Vrijwel elk hoofdstuk bevat bovendien een "Zelf proberen" sectie waarin
gebruikers aangespoord worden de werking van 'extra' opties te proberen.
Deze extra's sluiten nauw aan bij het geleerde in dat hoofdstuk. Zo worden
gebruikers nadat zij het onderstrepen hebben geoefend, aangespoord om
diverse andere mogelijkheden om tekst te accentueren te proberen.

2.2 OPTIMAAL TEKSTGEBRUIK
Om de tekst in een minimale handleiding zo optimaal mogelijk op de
gebruikers af te stemmen gelden twee basisregels. Ten eerste moet de
hoeveelheid tekst tot het minimum beperkt worden. Een minimale handleiding
heeft daarom geen voorwoord, inleiding, index, samenvattingen en overzich-
ten. Daarnaast wordt ook weinig tot geen conceptuele informatie gegeven.
Sterker nog, zelf de actie-informatie is niet altijd volledig. Aanwijzingen die
op het scherm te vinden zijn of gemakkelijk afgeleid kunnen worden, zijn
vaak opzettelijk weggelaten.
 Verder moet de tekst in een minimale handleiding zo eenvoudig mogelijk
zijn. De reden hiervoor ligt voor de hand. Omdat het leren tekstverwerken al
ingewikkeld genoeg is, moet het lezen en begrijpen van de tekst als het ware
vanzelf gaan. Daarom is de gemiddelde zinslengte in een minimale
handleiding kort, ongeveer 12 tot 14 woorden. Er worden geen samengestelde
zinnen gebruikt. Bovendien zijn jargon en technische termen vervangen door
hun alledaagse synoniemen.

2.3 ONDERSTEUNING VAN FOUTEN
Doordat een minimale handleiding gebruikers de vrijheid geeft naar eigen
inzicht te handelen, en hen daartoe zelfs stimuleert, neemt ook de kans op het
maken van fouten toe. Een minimale handleiding bevat daarom veel
informatie voor het ontdekken en herstellen van fouten. In hoofdstuk 1 staan
de algemeen toepasbare manieren om fouten te herstellen (bijvoorbeeld het
UNDO commando of de ESC toets). Daarnaast bevat elk hoofdstuk fouten-
informatie. Fouten-informatie is een soort vangnet; het ondersteunt zowel han-
delingen waarbij in de regel veel fouten gemaakt worden als acties waarbij het
risico bestaat dat gebruikers na een fout niet meer verder kunnen.
 Gebruikers doorlopen gewoonlijk drie fasen bij het herstellen van een fout:
detectie, diagnose en correctie. De fouten-informatie in de minimale
handleiding bestaat daarom uit informatie die al deze fasen ondersteunt.
Daarbij wordt een vaste volgorde aangehouden. Eerst wordt informatie
gegeven om een fout te ontdekken, daarna informatie over de meest
waarschijnlijke oorzaak van de fout en tenslotte informatie om de fout te

 DUTCH SUMMARY

140

herstellen. Omdat gebruikers die een bepaalde fout niet hebben gemaakt de
fouten-informatie ook zullen lezen, wordt deze als een voorwaardelijke
conditie geformuleerd: "Als de tekst ... op het scherm verschijnt (detectie),
dan ... (diagnose) ... dan ... (correctie)".
 Ondanks de aanwezigheid van fouten-informatie blijven nog (te) veel
fouten onopgemerkt. Dit komt doordat beginnende gebruikers hun aandacht
vaak niet goed over handleiding, toetsenbord en beeldscherm weten te
verdelen. Ze kijken te weinig naar het scherm, waardoor fouten zich
opstapelen en het steeds moeilijker wordt om ze te herstellen. Om dit te
voorkomen bevat een minimale handleiding coördinerende informatie. Deze
richt de aandacht van de gebruiker van tijd tot tijd op het scherm, bijvoorbeeld
om na te gaan waar een melding van het programma verschijnt. Een voorbeeld
van coördinerende informatie is "De tekst A:\TEKST1.DOC verschijnt op het
scherm. Ga na of dat zo is."

2.4 MODULARITEIT
De modulaire opbouw van een minimale handleiding komt het best tot
uitdrukking in de hoofdstukken. Elk hoofdstuk vormt een op zichzelf staand,
afgerond geheel. Omdat een minimale handleiding de gebruikers in staat stelt
om te doen wat ze zelf willen is dit essentieel. Sommige gebruikers zullen
zomaar middenin de handleiding willen beginnen, bijvoorbeeld omdat ze al
over enkele basisvaardigheden (denken te) beschikken. Ook degene die na een
pauze wil herstarten met de handleiding moet niet gedwongen worden weer
van voren af aan te beginnen.
 De hoofdstukken in een minimale handleiding zijn kort, hun lengte varieert
tussen twee en vier bladzijden. Zij geven de gebruiker de indruk dat het
doorwerken ervan − en daardoor het leren tekstverwerken − geen boven-
menselijke inspanning kost. Als vuistregel geldt dat elk hoofdstuk door
vrijwel alle gebruikers in dertig minuten door te werken moet zijn.

3. Het effect van de minimale handleiding

Deze principes illustreren een geheel nieuwe visie op het ontwerpen van
leshandleidingen voor beginnende computergebruikers. Hoewel de
minimalistische ideeën zeker veelbelovend zijn, is het de vraag of een
minimale handleiding in de praktijk ook inderdaad beter werkt dan een
conventionele handleiding. Onderzoek naar de effectiviteit van minimale
handleidingen toont aan dat dit inderdaad het geval is. Zo vonden Carroll en
zijn collega's bijvoorbeeld dat beginnende gebruikers in 40% minder tijd 58%

NEDERLANDSE SAMENVATTING

141

meer dingen leerden met een minimale dan met een conventionele
handleiding. Bovendien maakten zij 20% minder fouten en waren efficiënter
in het herstellen van fouten.
 Ook uit andere onderzoeken blijkt de effectiviteit van een minimale
handleiding. Toch is het moeilijk om de resultaten uit deze studies op de juiste
waarde te schatten. Veel onderzoeken (inclusief dat van Carroll c.s.) beschrij-
ven namelijk onvoldoende gedetailleerd welke principes gebruikt zijn voor het
ontwerpen van de minimale handleiding. Bovendien geven de
methodologische condities waaronder sommige resultaten verkregen zijn
aanleiding tot enige voorzichtigheid.
 Deze en andere methodologische kritieken vormden de aanleiding voor een
eigen onderzoek naar de werking van de minimale handleiding. Het primaire
doel van dit onderzoek was het valideren van de resultaten uit het oor-
spronkelijke onderzoek van Carroll. Daarnaast is nagegaan of computerer-
varing de effectiviteit van een minimale handleiding beïnvloedt.
 Om deze vragen te beantwoorden zijn de prestaties van twee groepen
gebruikers vergeleken. De ene groep leerde tekstverwerken met een minimale
handleiding, de andere groep met een conventionele (controle) handleiding.
De inhoud van beide handleidingen was identiek: de basisbeginselen van het
tekstverwerken met WordPerfect 5.1. Zij verschilden alleen ten aanzien van
de minimalistische principes. De minimale handleiding was een zo exact
mogelijke kopie van Carroll's originele handleiding; de controle handleiding
was afgeleid van een veelgebruikte, bekroonde Nederlandse handleiding voor
WordPerfect.
 De resultaten van dit onderzoek kwamen overeen met die van Carroll.
Gebruikers die met de minimale handleiding leerden tekstverwerken waren
sneller tijdens de training en tijdens de test. Zij maakten meer testopgaven
goed, maakten daarbij minder fouten en waren vaker in staat hun fouten
succesvol te herstellen. Deze gegevens ondersteunen de conclusie dat een
minimale handleiding een effectieve en efficiënte manier is om te leren
tekstverwerken.
 Verder bleek uit dit onderzoek dat computerervaring deze resultaten niet
beïnvloedt. De belangrijkste conclusie die hieruit getrokken kan worden is dat
een minimale handleiding net zo effectief is voor beginnende als voor meer
ervaren computergebruikers.
 Alleen weten dat de minimale handleiding werkt is echter niet voldoende;
weten waarom dat zo is, is minstens zo belangrijk. Anders gezegd, op welke
wijze dragen de afzonderlijke minimalistische principes bij aan het totale
effect van de minimale handleiding? Om deze vraag te beantwoorden moeten
de minimalistische principe afzonderlijk bestudeerd worden. Het onderzoek

 DUTCH SUMMARY

142

naar het effect van één van deze principes, het ondersteunen van fouten door
fouten-informatie, wordt in de volgende paragraaf beschreven.

4. Het effect van fouten en fouten-informatie

Van fouten kun je leren. Bijvoorbeeld hoe je een gemaakte fout in het vervolg
kunt voorkomen, hoe je een fout kunt herstellen of waarom bepaalde acties
niet tot het gewenste resultaat hebben geleid. Fouten zijn echter niet
automatisch effectief. Dit hangt af van de mate waarin ze door de instructie, in
dit geval de handleiding, ondersteund worden. Alleen wanneer gebruikers
directe feedback op gemaakte fouten krijgen, zullen zij daar wat van opsteken.
 Een minimale handleiding biedt deze ondersteuning in de vorm van fouten-
informatie. Wil fouten-informatie effectief zijn, dan zal ze zo veel mogelijk
moeten aansluiten bij wat gebruikers doen wanneer ze een fout herstellen. In
paragraaf 2.3 werd gesteld dat gebruikers daarbij drie fasen doorlopen: eerst
ontdekken ze de fout (detectie), bepalen de oorzaak daarvan (diagnose) en
tenslotte herstellen ze de fout (correctie).
 In de detectie-fase moeten gebruikers de fout signaleren. De fouten-infor-
matie in de handleiding wijst de gebruikers daarom op een zichtbare, maar
misschien (nog) niet waargenomen mededeling op het scherm. Om een fout
snel te kunnen ontdekken staat fouten-informatie altijd zo dicht mogelijk bij
de mogelijk foute handeling. Snelle detectie is belangrijk; het voorkomt een
opeenstapeling van fouten. Bovendien liggen de handelingen dan nog vers in
het geheugen waardoor een goede diagnose en een spoedig herstel mogelijk
zijn.
 In de diagnose-fase stelt de gebruiker vast welke fout gemaakt is. Wanneer
het programma dit aangeeft, vallen detectie en diagnose samen. De
aanwezigheid en het soort fout worden dan gelijktijdig opgemerkt. Dit is
bijvoorbeeld het geval met een melding als "FOUT -- bestand TEKT1.DOC niet
gevonden". Het programma geeft aan dat er een fout gemaakt is en vermeldt
bovendien welke fout dat is: een typefout (de letter "s" in "tekst" is vergeten).
 In de diagnose-fase kan ook een analyse van de oorzaak van de fout
plaatsvinden. In de meeste gevallen zal de gebruiker zelf de melding op het
scherm moeten interpreteren om de aard van de fout vast te kunnen stellen.
Hoewel dit bij de bovengenoemde foutmelding relatief eenvoudig en een-
duidig is, is dit eerder uitzondering dan regel. Omdat er vaak verschillende
mogelijkheden zijn waarom een fout gemaakt is, valt de precieze oorzaak
slechts in een beperkt aantal gevallen te voorspellen.
 In de correctie-fase stelt de gebruiker zich een nieuw doel. Dat kan zijn het
herstellen van de gemaakte fout en daarna verder gaan met waar men gebleven

NEDERLANDSE SAMENVATTING

143

was. In de praktijk blijkt echter dat gebruikers alleen in het herstel van een
fout geïnteresseerd zijn als dit nodig is om verder te kunnen werken. Bij de
meeste tekstverwerkers is dit vaak niet het geval en kan volstaan worden met
het opnieuw uitvoeren van de actie(s). Correctie komt dan neer op het her-
positioneren van de cursor en het nogmaals, nu correct, uitvoeren van de
eerder gevolgde procedure.

Het effect van fouten-informatie is in drie experimenten onderzocht. In het
eerste onderzoek zijn de leerprestaties van twee groepen gebruikers ver-
geleken. De ene groep leerde tekstverwerken met een minimale handleiding
mèt fouten-informatie. De andere groep deed dit met een minimale
handleiding waaruit alle fouten-informatie was verwijderd. De leerprestaties
werden gemeten met drie testen: één test voor het uitvoeren van taken met
WordPerfect (constructieve vaardigheden) en twee testen voor het ontdekken
en herstellen van fouten (correctieve vaardigheden).
 Fouten-informatie bleek de leerprestaties nauwelijks te beïnvloeden. Zowel
tijdens de training als tijdens de testfase waren gebruikers uit beide condities
even snel. Ook de scores op de constructieve test liet geen duidelijk verschil
tussen de twee groepen zien. Op de correctieve testen liepen de prestaties
uiteen, echter niet altijd in het voordeel van de fouten-informatie groep: op
sommige onderdelen scoorde de controle groep zelf beter.
 Dit onderzoek suggereert dat de aanwezigheid van fouten-informatie niet
bijdraagt aan het totale effect van de minimale handleiding. Deze conclusie is
echter niet geheel gerechtvaardigd. Hoewel fouten-informatie in dit onderzoek
de leerprestaties niet beïnvloedde, kan het een effect op het leerproces gehad
hebben. Anders gezegd, tijdens de training kan de fouten-informatie de
ontwikkeling van constructieve en correctieve vaardigheden ondersteund
hebben. Deze veronderstelling kan echter pas getoetst worden wanneer vast is
komen te staan dat fouten-informatie tijdens de training daadwerkelijk
geraadpleegd wordt.
 Het feitelijke gebruik van fouten-informatie is in een kleinschalig ex-
periment onderzocht. Acht beginnende computergebruikers leerden tekstver-
werken met een minimale handleiding. Ongeveer twintig procent van deze
handleiding bestond uit fouten-informatie. Tijdens de training werden de
gebruikers geobserveerd. Omdat in dit onderzoek uitsluitend naar het
leerproces werd gekeken, werden na afloop van de training geen testen af-
genomen.
 De observatiegegevens duiden op een frequent gebruik van fouten-
informatie. Verder bleek het raadplegen van fouten-informatie zich niet te
beperken tot situaties waarin een gemaakte fout ontdekt of hersteld moest
worden. Ook wanneer er geen fout was gemaakt controleerden de gebruikers

 DUTCH SUMMARY

144

aan de hand van de fouten-informatie of de beschreven fout zich had voor-
gedaan. Deze en andere gegevens leidde daarnaast tot een aantal aanwijzingen
voor verdere verbetering van de handleiding.
 Met de verbeterde versie van de handleiding is een derde onderzoek
uitgevoerd. In feite is dit onderzoek een combinatie van de twee hiervoor
beschreven experimenten. De opzet van het onderzoek is vrijwel identiek aan
die van het eerste onderzoek naar fouten-informatie. Het enige verschil is dat
behalve naar leerprestaties ook naar leeractiviteiten gekeken is.
 Uit dit onderzoek bleek dat gebruikers van de minimale handleiding mèt
fouten-informatie tijdens de training minder fouten maakten en sneller en
beter waren in het herstellen van fouten. Hierdoor hadden deze gebruikers
minder tijd nodig voor de training. Ook de prestaties op de correctieve testen
verschilden in het voordeel van de fouten-informatie groep. Gebruikers uit
deze groep waren beter in het aangeven van de oorzaak van een fout (dia-
gnose) en het herstellen ervan (correctie).
 Deze resultaten leidden enerzijds tot de conclusie dat het ondersteunen van
fouten door fouten-informatie gebruikers helpt bij het leren tekstverwerken.
Anderzijds geeft dit onderzoek aan op welke wijze fouten-informatie bijdraagt
aan de werking van een minimale handleiding. Fouten-informatie heeft met
name effect op de ontwikkeling van correctieve vaardigheden. Gebruikers die
tijdens de training fouten-informatie konden raadplegen waren zowel tijdens
als na de training beter in staat met fouten om te gaan. Daarnaast heeft de
aanwezigheid van fouten-informatie geen negatief effect op de ontwikkeling
van constructieve vaardigheden. Dit maakt fouten-informatie een onmisbaar
element in een (minimale) leshandleiding voor het leren omgaan met een
computerprogramma.

Appendices

146

 147

APPENDIX 1

Basic word processing tasks

Getting started

Turning the computer on
Starting the word processor
Ending the word processor

Creating a document

Typing text
Saving text

Revising an existing document

Clearing the screen
Retrieving a document
Moving the cursor
Correcting typing errors
Inserting and removing a blank line

Printing

Setting up the printer
Consulting the 'print preview'
Printing a document

Browsing through a document

Moving the cursor: shortcuts
Searching a text

 APPENDIX 1

148

Rearranging text

Deleting text
Moving text
Copying text

Formatting characters

Underlining text
Removing the underlines
Formatting text 'differently'

Changing the layout of a document

Changing the base font
Enlarging and reducing characters
Enlarging and reducing the line spacing

Changing the margins

Indenting the first line
Centering text
Alligning text 'flush right'

 149

APPENDIX 2

Illustrative pages of the minimal manual13

7. Formatting characters
�

�

�

Underlining text

With WordPerfect you can emphasize parts of the
text, for example by underlining them.
�

1 Retrieve the document COFFEE.WP

If the text COFFEE.WP does not appear on the status
line, you did not clear the screen first. Press the F7
key and type an N twice to clear the screen as
yet.

2 Block the words 'half a million dollars'

You can undo the block function by pressing the
F1 key.

3 Go to the menubar and select the option

FONT.
4 Press the ↓ key until you reach the command

APPEARANCE

A so-called submenu appears on the screen.

5 Press the • key once to enter the submenu.
6 Press the ↓ key to select the command

UNDERLINE
7 Press the ENTER key to underline 'half a

million dollars'

You can consult the 'Print preview' to see if 'half
a million dollars' has actually been underlined.

� ��� � 7.1�
� formatting characters

13 translated from the (Dutch) minimal manual that was used in the experiment in chapter 3.
Due to this translation, some minimalist principles may not show up well.

 APPENDIX 2

150

�

Removing the
underlines

WordPerfect uses so-called hidden codes. Strictly
speaking, if you underline something, you
command WordPerfect to 'underline everything
that is selected'. To remove these underlines, you
must remove the hidden codes.

1 Go to the menubar, select the option EDIT

and choose the command REVEAL CODES

The screen is now split in half. In the upper half
you see the text in the typing area. The lower half
shows the same text with the hidden codes. This
part is called the underwater screen.

2 Position the cursor at the underlined words

'half a million dollars'
3 Position the cursor in the underwater

screen on the code [UND] or [und] (it makes
no difference which code you choose).

4 Press the DELETE key.

Look at the underwater screen. The codes for
underlining text have disappeared: the words are
no longer underlined.

5 Choose the REVEAL CODES command again to

restore the normal screen.�
�

On your own With WordPerfect there are numerous ways to
highlight text. For example, boldface, italic or
sshhaaddooww pprriinnttiinngg. These commands work just like
the underline command.

Try these techniques yourself. You can see the
results by consluting the ‘Print preview’.

� �

7.2� ����������������������������������� ��
� formatting characters

 151

APPENDIX 3

Illustrative pages of the self-study manual14

5. Editing text
�

�

� This chapter deals with formatting (or editing)
characters, words and lines. Among others,
topics like underlining text, changing the
margins and centering text will be discussed.

Please note (1): with most of these options,
hidden codes are placed in the text. As was
explained in section 4.4, these codes can be
displayed by using the REVEAL CODES command

Please note (2): in this chapter the term 'base
font' is used. The base font determines the size
and style of the basic text. Typefaces like
Helvetica, Times Roman and Courier are
different base fonts. When the program uses, for
example, Times Roman with a font size of 11
points as its base font, all text will be printed in
11-point Times Roman.

Please note (3): the size of the characters that
will be printed is called the font size. The font
size is expressed in points. One point equals
1/72 inch. Its notation is 1p. (So: 72 p = 1 inch,
or 2.54 cm).

5.1 Modifying
characters

Modifying characters means: changing the
appearance of characters without changing the
base font and font size. Examples of such
modifications are boldface, underline, or italic.
The methods to modify text are highly similar;
only the corresponding commands differ. All

� ��� � 41�
� editing text

14 translated from the (Dutch) self-study manual used as control manual in the experiment in
chapter 3. Due to a different sequencing of the content of this manual, the reveal codes
command is discussed in a different chapter

 APPENDIX 3

152

�

� commands are listed under the option FONT. The
procedure to activate them is as follows.

Modifying new text

When new text has to be underlined, boldfaced, put
in italics or highlighted in another way, you should
do as follows:

1 Press [ALT].
2 Press [•] to select the option FONT.
3 Press [↓] to select the command APPEARANCE; a

so-called submenu appears.
4 Press [•] to enter the submenu.
5 Press [↓] to select the desired command.
6 Press [ENTER].
7 Type the text; it will be modified as you type.
8 Choose the same command again to return to

the standard textmode.

Please note: codes to modify text are paired codes
(see section 4.3). To return the text to normal, you
can also press [•] once. The cursor is then placed
right after the code for the modification. In the typing
area, this action is not visible; to see what happens,
check the underwater screen.

Modifying previously typed text

To boldface, underline or italicalize existing
characters, take the following steps:

1 Block the text you want to modify (see section

3.2).
2 Press [ALT].
3 Press [•] to select the option FONT.
4 Press [↓] to select the command APPEARANCE; a

so-called submenu appears.
5 Press [•] to enter the submenu.
6 Press [↓] to select the desired command.
7 Press [ENTER].

��� ��������������������������������� ��

� �
���	�������

ILLUSTRATIVE PAGES OF THE SELF-STUDY MANUAL

153

�

� Inserting text to modifications

When text is, for example, underlined, it is enclosed
by the following codes:

- [UND] as the starting code (text is underlined

from here).
- [und] as the ending code (underlining stops

here).

These codes can be envisioned by using the
command REVEAL CODES. The appearance of text that
is inserted between these two codes is automatically
modified as the already existing text. This implies
that:

- inserting text between two words that are

already underlined does not require additional
modification. Just position the cursor between
the two words and type the addition.

- inserting text at the beginning of underlined text
requires the cursor to be positioned after the
starting code [UND]. Look at the status line or
consult the underwater screen to verify if the
cursor is right after the starting code.

- inserting text at the end of underlined text
requires the cursor to be positioned right before
the ending code [und]. Look at the status line or
consult the underwater screen to verify if such
is the case. If so, the cursor is positioned
correctly and the new text will be underlined.

Undoing modifications

Markings like boldface or underline are negated by
removing their codes. As with every paired code, only
one of them has to be deleted; the remaining code is
automatically removed by the program. To remove
codes, it is best to display them first with the REVEAL

CODES command. Then position the cursor on one of
the codes and press [DELETE].

� ��� � 43�
� editing text

 APPENDIX 3

154

��

 155

APPENDIX 4

Motivational questionnaires experiment 115

3.1 Initial motivation

RELEVANCE (� = 0.77)
1. I type my letters, memos, reports and the like.
2. I pay attention to the lay-out of letters, memos, reports and the like.
3. I type or write official letters.
4. Having one's own computer is useful.
5. I find it important that my letters, memos, reports and the like look fine.
6. There is no need to type letters, memos, reports and the like.
7. I write official letters.
8. I would buy a computer if I had the money.
9. I will need to do a lot of typing this year.
10. At the utmost I will be preparing two reports this year.

CURIOSITY (� = 0.84)

1. I read about computers.
2. I am fascinated by modern technology.
3. I want to know how technical apparatuses work.
4. I pay attention to technology.
5. Technical developments fascinate me.
6. I am absolutely not interested in how technical apparatuses work.
7. I am interested in computers.
8. I find it important to keep in touch with technological developments.

REFERENCE GROUP (� = 0.70)

1. I know many people who own a computer.
2. My relatives, friends and acquaintances are interested in computers.
3. The people that I know are fascinated with computers.
4. My relatives, friends and acquaintances own a computer.

15

all items are translated from Dutch.

 APPENDIX 4

156

CONFIDENCE/PRIOR KNOWLEGDE (� = 0.91)
1. I find it difficult to learn how to operate a technical apparatus.
2. I know almost nothing about technical apparatuses.
3. I quickly understand how technical apparatuses work.
4. I can easily handle technical apparatuses.
5. My friends are better at handling technical equipment than me.
6. Compared with the people that I know I am handy with technical

apparatuses.
7. I quickly know how a technical apparatus works.
8. It takes me a long time before I understand how to use a technical

apparatus.
9. I cannot handle technical apparatuses very well.

PERSISTENCE (� = 0.77)

1. When I am having a problem, I keep working on it until it is solved.
2. I finish what I start.
3. If I cannot solve a problem quickly, I will leave it be.
4. If I start something it does not mean that I will also finish it.

3.2 Motivation after training

SATISFACTION (� = 0.81)

1. I like word processing.
2. I find working with WordPerfect stimulating.
3. Word processing is boring.
4. It didn't come easy today.
5. It took me longer to learn WordPerfect than I expected.
6. My knowledge of WordPerfect is very useful.
7. I get annoyed from word processing.
8. Word processing is unpleasant.
9. Word processing is frustrating.
10. Word processing is scary.

CONFIDENCE (� = 0.85)

1. Now I know how to use a wordprocessor.
2. WordPerfect is difficult.
3. I find it scary to work with the computer.

MOTIVATIONAL QUESTIONNAIRES EXPERIMENT 1

157

4. I find word processing scary.
5. Now I can do my word processing without help.
6. I feel that I can work well with WordPerfect.
7. Word processing is simple.
8. I am confident with regard to word processing.

RELEVANCE (� = 0.78)

1. Wordprocessors are handy.
2. My knowledge of WordPerfect comes in handy for my study, work or

hobby.
3. I rather type my letters, memos, reports and the like on a typewriter than

with a wordprocessor.
4. I don't think that I will be using WordPerfect shortly.
5. I would like to use WordPerfect as quickly as possible.

ATTENTION (� = 0.73)

1. The manual directs your attention to important things.
2. The manual gives good cues.
3. The manual gave good suggestions what to look for.

 158

 159

APPENDIX 5

Confidence questionnaires experiment 216

4.1 Initial confidence

CONFIDENCE ITEMS
217. I find it difficult to learn how to operate a technical apparatus.
4. I know almost nothing about technical apparatuses.
6. I quickly understand how technical apparatuses work.
9. I can easily handle technical apparatuses.
11. My friends are better at handling technical equipment than me.
14. Compared with the people that I know I am handy with technical

apparatuses.
15. I quickly know how a technical apparatus works.
18. It takes me a long time before I understand how to use a technical

apparatus.
20. I cannot handle technical apparatuses very well.

FILLER ITEMS
1. I work very concentrated.
3. My relatives, friends and acquiantances think working with a computer

is difficult.
5. Having one's own computer is useful.
7. When I am having a problem, I keep working on it until it is solved.
8. I find it importantn that my letters, memos, reports and the like look

fine.
10. If I cannot solve a problem quickly, I leave it be.
12. I am fascinated by modern technology.
13. I would buy a computer if I had the money.
16. I am not interested in computers.
17. My official letters always look fine.
19. When something interests me, I want to know all the ins and outs.

16

all items are translated from Dutch.
17

numbers indicate the order in which the items appeared in the questionnaire.

